

TPD3S714-Q1 Automotive USB 2.0 Interface Protection With Short-to-Battery and Short-Circuit Protection

1 Features

- AEC-Q100 Qualified (Grade 1)
 - Operating Temperature Range : –40°C to +125°C
- Functional Safety-Capable
 - Documentation available to aid functional safety system design
- Short-to-Battery (up to 18 V) and Short-to-Ground Protection on V_{BUS CON}
- Short-to-Battery (up to 18 V) and Short-to-V_{BUS} Protection on VD+, VD–
- + IEC 61000-4-2 ESD Protection on $V_{BUS_CON},$ VD+, VD–
 - ±8-kV Contact Discharge
 - ±15-kV Air Gap Discharge
- + ISO 10605 330-pF, 330- Ω ESD Protection on $V_{BUS\ CON},$ VD+, VD–
 - ±8-kV Contact Discharge
 - ±15-kV Air Gap Discharge
- Low R_{ON} nFET V_{BUS} Switch (63-mΩ Typical)
- High Speed Data Switches (1-GHz, –3-dB Bandwidth)
- Hiccup Current Limit
 - 550-mA Overcurrent Limit (Minimum)
- Fast Overvoltage Response Time
 - 2-µs Typical (V_{BUS} Switch)
 - 200-ns Typical (Data Switches)
- Integrated Input Enable for V_{BUS}, VD+, VD–
- · Fault Output Signal
- Thermal Shutdown Feature
- 16-Pin SSOP Package (4.9 mm × 3.9 mm)

2 Applications

- End Equipment
 - Head Units
 - Rear Seat Entertainment
 - Telematics
 - USB Hub
 - Navigation Modules
 - Media Interface
- Interfaces
 - USB 2.0

3 Description

The TPD3S714-Q1 is a single-chip solution for shortto-battery, short-circuit, and ESD protection for the USB connector's V_{BUS} and data lines in automotive USB hubs, head units, rear seat entertainment, telematics, and media interface applications. The integrated data switches provide best-in-class bandwidth for minimal signal degradation during USB short-to-battery events. The high bandwidth of 1 GHz allows for a clean USB 2.0 high-speed (480 Mbps) eye diagram with the long captive cables that are common in the automotive USB environment

The short-to-battery protection isolates the internal system circuits from any overvoltage conditions at the V_{BUS CON}, VD+, and VD- pins. On these pins, the TPD3S714-Q1 can handle overvoltages up to 18 V for hot plug and DC events. The overvoltage protection circuit provides the most reliable short-to-battery isolation in the industry, shutting off the switches and protecting the upstream transceiver from harmful voltage and current spikes. The V_{BUS CON} pin also provides an accurate current limited load switch up to 0.5 A. The overcurrent protection automatically limits current to prevent drooping of the upstream rail during short-to-ground events. Additionally, this device also integrates system level IEC 61000-4-2 and ISO 10605 ESD protection on V_{BUS CON}, VD+, and VD- pins which removes the need to provide external highvoltage, low capacitance ESD diodes

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPD3S714-Q1	SSOP (16)	4.90 mm × 3.90 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application Schematic

Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Revision History	
5 Pin Configuration and Functions	3
6 Specifications	
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings—AEC Specification	4
6.3 ESD Ratings—IEC Specification	4
6.4 ESD Ratings—ISO Specification	4
6.5 Recommended Operating Conditions	
6.6 Thermal Information	<mark>5</mark>
6.7 Electrical Characteristics	<mark>5</mark>
6.8 Timing Requirements	<mark>8</mark>
6.9 Typical Characteristics	9
7 Parameter Measurement Information	
8 Detailed Description	14
8.1 Overview	14
8.2 Functional Block Diagram	14
8.3 Feature Description.	14

8.4 Device Functional Modes	16
9 Application and Implementation	. 17
9.1 Application Information	. 17
9.2 Typical Application	
10 Power Supply Recommendations	
10.1 V _{BUS} Path	
10.2 V _{IN} Pin	.20
11 Layout	
11.1 Layout Guidelines	
11.2 Layout Example	
12 Device and Documentation Support	
12.1 Documentation Support	
12.2 Receiving Notification of Documentation Updates.	
12.3 Support Resources	
12.4 Trademarks	.22
12.5 Electrostatic Discharge Caution	.22
12.6 Glossary	
13 Mechanical, Packaging, and Orderable	
Information	. 22

4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (August 2017) to Revision C (August 2020)	Page
Updated the numbering format for tables, figures and cross-references throughout the	document1
Added functional safety link to the <i>Features</i> section	1
Changes from Revision A (April 2016) to Revision B (August 2017)	Page
Updated ESD Protection on V _{BUS_CON} , VD+, VD- section	15
Changes from Revision * (January 2016) to Revision A (April 2016)	Page
Updated Typical Application Schematic, Figure 7-1 and Figure 7-2	1
Updated Electrical Characteristics table	1
Added content to Short-to-Battery Tolerance	1
• Updated IEC waveform graphs with cleaner data in Typical Characteristics	1

5 Pin Configuration and Functions

Pin Functions

PIN		ТҮРЕ	DESCRIPTION
NO.	NAME	ITPE	DESCRIPTION
1	NC	NC	No connect, leave floating or connect to ground. Do not connect to V_{BUS_CON}
2	N/	0	Connect to LISP connector V
3	V _{BUS_CON}	0	Connect to USB connector V _{BUS_CON} ; provides IEC 61000-4-2 ESD protection
4	GND	Ground	Connect to PCB ground plane
5	VD-	I/O	Connect to USB connector D-; provides IEC 61000-4-2 ESD protection
6	VD+	I/O	Connect to USB connector D+; provides IEC 61000-4-2 ESD protection
7	D-	I/O	Connect to internal D- transceiver
8	VD+	I/O	Connect to internal D+ transceiver
9	V _{IN}	I	Connect to 3.3-V I/O. Controls the OVP threshold for VD+/VD-
10	FLT	0	Open-Drain fault pin. Refer device description for operation
11	ĒN	I	Enable Active-Low Input. Drive $\overline{\text{EN}}$ low to enable the device. Drive $\overline{\text{EN}}$ high to disable the device
12	GND	Ground	Connect to DCD ground plane
13	GND	Ground	Connect to PCB ground plane
14	N		Connect to internal V name
15	V _{BUS_SYS}		Connect to internal V _{BUS} plane
16	NC	NC	No connect, leave floating or connect to ground. Do not connect to $\mathrm{V}_{\mathrm{BUS}_\mathrm{CON}}$

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

		MIN	MAX	UNIT
V _{BUS_CON}	Supply voltage from USB connector	-0.3	18	V
V _{BUS_SYS}	Internal supply DC voltage rail on the PCB	-0.3	6	V
VD+, VD–	Voltage range from connector-side USB data lines	-0.3	18	V
D+, D–	Voltage range for internal USB data lines	-0.3	V _{IN} + 0.3	V
V _{IN}	Voltage range for V _{IN} supply input	-0.3	4	V
ĒN	Voltage on enable pin		7	V
T _A	Operating free air temperature	-40	125	°C
T _{STG}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

6.2 ESD Ratings—AEC Specification

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±4000	V	
V _(ESD)	Electrostatic discriarge	Charged-device model (CDM), per AEC Q100-011	±1500	v

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 ESD Ratings—IEC Specification

				VALUE	UNIT
V	Electrostatic discharge	IEC 61000-4-2, V _{BUS CON} , VD	Contact discharge ⁽¹⁾	±8000	V
V _(ESD)	Electrostatic discharge	+, VD– pins	Air-gap discharge ⁽¹⁾	±15000	v

(1) See the *ESD System Test Setup* diagram for details on system level ESD testing setup.

6.4 ESD Ratings—ISO Specification

				VALUE	UNIT
V	Electrostatic discharge	ISO 10605 (330 pF, 330 Ω),	Contact discharge ⁽¹⁾	±8000	V
V _(ESD)		V _{BUS_CON} , VD+, VD– pins	Air-gap discharge ⁽¹⁾	±15000	v

(1) See the ESD System Test Setup diagram for details on system level ESD testing setup.

6.5 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _{BUS_CON}	Supply voltage from USB connector			5.25	V
V _{BUS_SYS}	Internal supply DC voltage rail on the PCB		4.75	5.25	V
VD+, VD–	Voltage range from connector-side USB data li	ines	0	V _{IN} + 0.3	V
D+, D–	Voltage range for internal USB data lines		0	V _{IN} + 0.3	V
V _{IN}	Voltage range for V _{IN} supply		3	3.6	V
I _{BUS}	Current through V _{BUS} switch			500	mA
EN	Voltage range for enable		0	5.9	V
C _{SYS}	Input capacitance ⁽¹⁾	V _{BUS_SYS} pin		100	μF

6.5 Recommended Operating Conditions (continued)

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
C _{LOAD}	Output load capacitance ⁽¹⁾	V _{BUS_CON} pin	1		μF
C _{VIN}	V _{IN} capacitance ⁽¹⁾	V _{IN} pin	1		μF

(1) See Figure 9-1 for configuration details

6.6 Thermal Information

		TPD3S714-Q1	
	THERMAL METRIC ⁽¹⁾	DBQ (SSOP)	UNIT
		16 PINS	
θ _{JA}	Junction-to-ambient thermal resistance	98.8	°C/W
θ _{JCtop}	Junction-to-case (top) thermal resistance	48	°C/W
θ _{JB}	Junction-to-board thermal resistance	41.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	8.5	°C/W
Ψјв	Junction-to-board characterization parameter	41.2	°C/W
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.7 Electrical Characteristics

over operating free-air temperature range, $\overline{EN} = 0 \text{ V}$, $V_{BUS_SYS} = 5 \text{ V}$, $V_{IN} = 3.3 \text{ V}$, $VD+/VD-/D+/D-/V_{BUS_CON} =$ float (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRE	INT CONSUMPTION					· ·	
IVBUS_SLEEP	V _{BUS} sleep current consumption	on	Measured at $V_{BUS_{SYS}}$ pin, \overline{EN} = 5 V		45	150	μA
I _{VBUS}	V _{BUS} operating current consum	nption	Measured at V _{BUS_SYS} pin		285	380	μA
I _{VIN}	Leakage current for V _{IN}		Measured at V_{IN} pin, V_{IN} = 3.6 V		12	25	μA
I _{ON(LEAK)}	Leakage through V _{BUS} while s and powered on	horted to battery	Measured flowing in to V_{BUS_SYS} pin, V_{BUS_SYS} = 5 V, V_{BUS_CON} = 18 V			120	μA
I _{OFF(LEAK)}	Leakage through V _{BUS} while s and unpowered	horted to battery	Measured flowing out of V_{BUS_SYS} pin, $V_{BUS_SYS} = 0 V$, $V_{BUS_CON} = 18 V$			50	μA
I _{VD(OFF_LEAK)}	Leakage into data path while s and unpowered	horted to battery	Measured flowing in to VD+ or VD– pins, $V_{BUS_SYS} = 0 V$, VD+ or VD– = 18 V, $V_{IN} = 0 V$, D+/D– = 0 V			80	μA
I _{VD(ON_LEAK)}	Leakage into data path while s and powered on	horted to battery	Measured flowing in to VD+ or VD– pins, V _{BUS_SYS} = 5 V, VD+ or VD– = 18 V, D+/D– = 0 V			80	μA
V _{IN} PIN			1				
VUVLO(RISING)	Undervoltage lockout rising for V _{IN}		Ramp V _{IN} down until \overline{FLT} is deasserted, \overline{EN} = 5 V	2.6	2.7	2.9	V
V _{UVLO(FALLING)}	Undervoltage lockout falling for V _{IN}	- V _{IN}	Ramp V _{IN} until \overline{FLT} is asserted, $\overline{EN} = 5 V$	2.5	2.6	2.8	v
EN, FLT PINS			· · · · · ·				
V _{IH}	High-level input voltage	EN	Set $\overline{EN} = 0$ V; Sweep \overline{EN} to 1.4 V; Measure when \overline{FLT} is asserted	1.2			V
V _{IL}	Low-level input voltage	EN	Set \overline{EN} = 3.3 V; Sweep \overline{EN} from 3.3 V to 0.5 V; Measure when \overline{FLT} is deasserted			0.8	V
IIL	Input leakage current	EN	V _(EN) = 3.3 V ; Measure Current into EN pin			1	μA
V _{OL}	Low-level output voltage	FLT	I _{OL} = 3 mA			0.4	V
	V _{BUS}	•					-
I _{LIM}	Overcurrent limit	V _{BUS}	Progressively load V _{BUS_CON} until device asserts FLT	550	700	850	mA
OVERTEMPERA	TURE PROTECTION	1					

Copyright © 2020 Texas Instruments Incorporated

6.7 Electrical Characteristics (continued)

over operating free-air temperature range, $\overline{EN} = 0 \text{ V}$, $V_{BUS_SYS} = 5 \text{ V}$, $V_{IN} = 3.3 \text{ V}$, $VD+/VD-/D+/D-/V_{BUS_CON} =$ float (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SD(RISING)}	The rising overtemperature prot threshold	tection shutdown	$V_{BUS_{SYS}} = 5 V, \overline{EN} = 0 V, No Load on V_{BUS_{CON}}, T_A stepped up until FLT is asserted$	150	165	180	°C
T _{SD(FALLING)}	The falling overtemperature pro threshold	tection shutdown	$\begin{array}{l} V_{BUS_SYS} = 5 \text{ V}, \overline{EN} = 0 \text{ V}, \text{ No Load on} \\ V_{BUS_CON}, T_A \text{ stepped down from } T_{SD(RISING)} \\ \text{until FLT is deasserted} \end{array}$	125	130	140	°C
T _{SD(HYST)}	The overtemperature protection threshold hysteresis	shutdown	$T_{SD(RISING)} - T_{SD(FALLING)}$	10	35	55	°C
OVP CIRCUIT-V _B	US						
V _{OVP(RISING)}	Input overvoltage protection threshold	V _{BUS_CON}	Increase V_{BUS_CON} from 5 V to 7 V. Measure when \overline{FLT} is asserted	5.4	5.6	5.8	V
V _{HYS(OVP)}	Hysteresis on OVP	V _{BUS_CON}	Difference between rising and falling OVP thresholds on $V_{\text{BUS}_\text{CON}}$		50		mV
T _{OVP(FALLING)}	Input overvoltage protection threshold	V _{BUS_CON}	Decrease V _{BUS_CON} from 7 V to 5 V. Measure when FLT is deasserted	5.36		5.74	V
V _{UVLO(SYS_RISING)}	Undervoltage lockout rising for VBUS_SYS	V _{BUS_SYS}	$V_{\text{BUS}_\text{SYS}}$ voltage rising from 0 V to 5 V	3.1	3.3	3.6	V
V _{HYS(UVLO_SYS)}	V _{BUS_SYS} UVLO hysteresis	V _{BUS_SYS}	Difference between rising and falling UVLO thresholds on V_{BUS_SYS}	50	75	100	mV
VUVLO(SYS_FALLING)	Undervoltage lockout falling for V _{BUS_SYS}	V _{BUS_SYS}	V_{BUS_SYS} voltage falling from 7 V to 3 V	3	3.2	3.5	V
V _{SHRT(RISING)}	Short-to-ground comparator rising threshold	V _{BUS_CON}	Increase V_{BUS_CON} voltage from 0 V until the device transitions from the short-circuit to over- current mode of operation	2.5	2.6	2.7	V
VSHRT(FALLING)	Short-to-ground comparator falling threshold	V _{BUS_CON}	Set $V_{BUS_SYS} = 5 V$; $V_{IN} = 3.3 V$; $\overline{EN} = 0 V$; Decrease V_{BUS_CON} voltage from 5 V until the device transitions from the overcurrent to short- circuit mode of operation	2.4	2.5	2.6	V
V _{SHRT(HYST)}	Short-to-ground comparator hysteresis	V _{BUS_CON}	Difference between $V_{SHRT(RISING)}$ and $V_{SHRT(FALLING)}$		125	150	mV
I _{SHRT}	Short-to-ground current source V _{BUS_CON}		Current sourced from V_{BUS_SYS} when device is in short-circuit mode	150		350	mA
OVP CIRCUIT—VD	+/VD-						
V _{OVP(RISING)}	Input overvoltage protection threshold	VD+/VD-	Increase VD+ or VD– (with D+ and D–) from 3.3 V to 4.5 V. Measure the value at which $\overline{\text{FLT}}$ is asserted	V _{IN} + 0.6	V _{IN} + 0.8	V _{IN} + 1	V
V _{HYS(OVP)}	Hysteresis on OVP	VD+/VD-	Difference between rising and falling OVP thresholds on VD+/VD–		50		mV
V _{OVP(FALLING)}	Input overvoltage protection threshold	VD+/VD-	Decrease VD+ or VD– (with D+ or D–) from 4.5 V to 2 V. Measure the value at $\overline{\text{FLT}}$ is deasserted	V _{IN} + 0.525	V _{IN} + 0.75	V _{IN} + 0.975	V
SHORT-TO-BATTE	RY	•					
V _(VBUS_STB)	V _{BUS} hotplug short-to-battery tolerance	V _{BUS_CON}	Charge battery-equivalent capacitor to test voltage then discharge to pin under test			18	V
V _(DATA_STB)	Data line hotplug short-to- battery tolerance	VD+/VD-	through a 1-meter, 18-gauge wire. (See Figure 7-1 for more details)			18	V
DATA LINE SWITC	HES—VD+ to D+ or VD-to D-						
C _{ON}	Equivalent on capacitance		Capacitance of D+/D– switches when enabled - measure on connector side across bias voltage 0 V to 0.4 V		6.2		pF
R _{ON}	On resistance		Measure resistance between D+ and VD+ or D– and VD–, voltage between 0 and 0.4 V		4	6.5	Ω
R _{ON(Flat)}	On resistance flatness		Measure resistance between D+ and VD+ or D– and VD–, sweep voltage between 0 V and 0.4 V $$		0.2	1	Ω
BW _{ON}	On bandwidth (–3 dB)		Measure S_{21} bandwidth from D+ to VD+ or D- to VD- with voltage swing = 400 mVpp, V_{CM} = 0.2 V		860		MHz

6.7 Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BW _{ON_DIFF}	On bandwidth (–3 dB)	Measure S_{DD21} bandwidth from D+ to VD+ and D- to VD- with voltage swing = 800 mVpp differential, V_{CM} = 0.2 V		1050		MHz
X _{talk}	Crosstalk	Measure S_{21} bandwidth from D+ to VD- or D- to VD+ with voltage swing = 400 mVpp. Be sure to terminate open sides to 50 ohms. f = 480 MHz		-34		dB
nFET SWITCH-	–VBus					
R(DISCHARCE)	Output discharge resistance	$\overline{\text{EN}}$ = 5 V, Set V _{BUS_CON} = 5 V and measure			12500	0

R _(DISCHARGE)	Output discharge resistance	EN = 5 V, Set V _{BUS_CON} = 5 V and measure current flow to ground		12500	Ω
R _{ON}	Switch ON resistance	V _{BUS_CON} = 5 V, I _{OUT} = 0.5 A	63	150	mΩ

6.8 Timing Requirements

over operating free-air temperature range, $\overline{EN} = 0 \text{ V}$, $V_{BUS_SYS} = 5 \text{ V}$, $V_{IN} = 3.3 \text{ V}$, $VD+/VD-/D+/D-/V_{BUS_CON} =$ float (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
ENABLE PIN									
t _{ON} Enable on time		Time between enable device until FLT deasserts		13		ms			
OVERCURR	ENT PROTECTION								
t _{BLANK} Overcurrent blanking time		Time from overcurrent condition until \overline{FLT} assertion and V_{BUS} FET turnoff			2	ms			
t _{RETRY}	Overcurrent retry time	Time from overcurrent FET shut off until FET turns back on	100			ms			
t _{RECV}	Overcurrent recovery time	Time from end of t _{RETRY} until FLT deassertion if overcurrent condition is removed		8		ms			
OVERVOLTA	GE PROTECTION								
t _{OVP_response}	OVP response time – V _{BUS}	Measured from OVP Condition to FET turnoff		2	4	μs			
t _{OVP_response}	OVP response time – data switches	Measured from OVP Condition to FET turnoff		200		ns			
SHORT-TO-C	ROUND PROTECTION								
t _{SHRT}	Short to ground response time	C_{LOAD} = 0 uF, Time from short condition until current falls below 120% of I_{SHRT}							

6.9 Typical Characteristics

7 Parameter Measurement Information

Figure 7-1. Short-to-Battery System Test Setup

Incorporated

Figure 7-2. ESD System Test Setup

8 Detailed Description

8.1 Overview

The TPD3S714-Q1 provides a single-chip ESD protection and overvoltage protection solution for automotive USB interfaces. It offers short to battery protection up to 18 V and short to ground protection on V_{BUS_CON} . The TPD3S714-Q1 also provides a FLT pin that indicates to the system if a fault condition has occurred. The TPD3S714-Q1 offers ESD clamps on the V_{BUS_CON} , VD+, and VD– pins, thus eliminating the need for external TVS clamp circuits in the application.

The TPD3S714-Q1 has internal circuitry that controls the turnon of the internal nFET switches. An internal oscillator controls the timers that enable the switches and resets the open-drain \overline{FLT} output. If V_{BUS_CON} is less than V_{OVP} , the switches are enabled. After an internal delay, the charge-pump starts-up, turns on the internal nFET switch through a soft start. Once the nFET is completely turned ON, TPD3S714-Q1 releases \overline{FLT} pin to HIGH. At any time, if any of the external pins rise above V_{OVP} , \overline{FLT} pin is pulled LOW. The nFET switches are turned OFF.

8.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

8.3 Feature Description

8.3.1 AEC-Q100 Qualified

The TPD3S714-Q1 is an automotive qualified device according to the AEC-Q100 standards. This device is qualified to operate from -40 to +125°C ambient temperature.

8.3.2 Short-to-Battery and Short-to-Ground Protection on V_{BUS_CON}

The V_{BUS CON} pin is protected against shorts to battery and shorts to ground.

Once a voltage on V_{BUS_CON} is detected as too low (below the V_{SHRT} threshold) after the device is enabled, the device enters short-circuit protection mode and assert \overline{FLT} . It sources the I_{SHRT} current until it detects the voltage rising above the V_{SHRT} threshold, where it resumes standard operating mode and deassert \overline{FLT} .

Once a voltage above the V_{OVP} threshold is detected by the device, it shuts off all FETs and asserts a fault on the FLT pin. Once the excessive voltage is removed, the device automatically re-enables and FLT deasserts (see the *Timing Requirements* table for more details).

8.3.3 Short-to-Battery and Short-to-V_{BUS} Protection on VD+, VD-

The VD+ and VD– pins are protected against shorts to battery and shorts to bus. The OVP threshold on the VD+ and VD– pins is low enough that it protects against shorts to V_{BUS} .

Once a voltage above the V_{OVP} threshold is detected by the device, it shuts off all FETs and asserts a fault on the \overline{FLT} pin. Once the excessive voltage is removed, the device automatically re-enables and \overline{FLT} deasserts.

8.3.4 ESD Protection on V_{BUS CON}, VD+, VD-

The protected pins (V_{BUS_CON}, VD+, VD–) are tested to pass the IEC 61000-4-2 ESD standard up to Level 4 ESD protection. Additionally, these pins are tested against ISO 10605 with the 330-pF, 330- Ω equivalent network. This guarantees passing of at least ±8-kV contact discharge and ±15-kV air gap discharge according to both standards using test setup shown in Figure 7-2.

8.3.5 Low R_{ON} nFET V_{BUS} Switch

The V_{BUS} switch has a low R_{ON} that provides minimal voltage droop from system to connector. Typical resistance is 63 m Ω and is specified for 150 m Ω at 125°C ambient temperature.

8.3.6 High Speed Data Switches

The D+ and D– switches have a very low capacitance and a high bandwidth (1-GHz typical), allowing for a clean USB 2.0 eye diagram.

8.3.7 Hiccup Current Limit

The V_{BUS} path of this device has an integrated overcurrent protection circuit. Above the overcurrent threshold (550-mA minimum), the device goes into a fault state where it limits current to the threshold. After a short blanking time, the device cycles on and off to try to check if the connected device is still in overcurrent.

8.3.8 Fast Overvoltage Response Time

The overvoltage FETs are designed to have a fast turnoff time to protect the upstream SoC as quickly as possible. Typical response time for complete turnoff is 2 μ s for the V_{BUS} path and 200 ns for the data path.

8.3.9 Integrated Input Enable

The TPD3S714-Q1 has an enable input to turn on and off the device. The \overline{EN} pin disables and enables the V_{BUS} and data paths.

8.3.10 Fault Output Signal

The TPD3S714-Q1 has a fault pin, FLT that indicates when there is any sort of fault condition because of OVP, OCP, or short-circuit.

8.3.11 Thermal Shutdown Feature

In the event that the device exceeds the maximum allowable junction temperature, it shuts down the device to prevent damage to itself and indicate via the fault pin.

8.3.12 16-pin SSOP Package

This device is packaged in a standard 16-pin SSOP leaded package.

8.4 Device Functional Modes

8.4.1 Normal Operation

The TPD3S714-Q1 operates normally (all FETs on) when enabled, both V_{BUS_SYS} and V_{IN} are above their UVLO thresholds, and the device is not in any fault conditions.

8.4.2 Overvoltage Condition

When the VD+, VD–, or V_{BUS_CON} pins exceed their OVP threshold, the device enters the overvoltage state. All FETs are disabled and the FLT pin is asserted. Once the protected pins drop below their OVP threshold, the device automatically turns back on.

8.4.3 Overcurrent Condition

When the current through the V_{BUS} path exceeds the I_{LIM} current threshold, the device enters into the overcurrent state. The TPD3S714-Q1 limits current to the I_{LIM} threshold by dropping voltage across the V_{BUS} FET to maintain constant current. Once it continues to sense an overcurrent condition for the blanking time t_{BLANK}, the device disables itself for the retry time, t_{RETRY} and then retry automatically for the retry time, t_{BLANK_RETRY}. In the event that the current is below the overcurrent threshold, the device deasserts fault and resumes normal operation.

8.4.4 Short-Circuit Condition

When the voltage on the V_{BUS_CON} side drops below the V_{SHRT} threshold while enabled, the TPD3S714-Q1 enters the short-circuit mode. It sources a constant current of I_{SHRT} until it rises above the V_{SHRT} threshold. Once that occurs, the device automatically re-enters normal operation and deasserts fault.

8.4.5 Device Logic Tables

Table 8-1 shows the TPD3S714-Q1 V_{BUS} Logic Table.

VOL	TAGE CONDITIO	N		CURRENT CONDITION	
V _{BUS_CON}	V _{BUS_SYS}	EN	CURRENT FLOW	COMMENT	FLT PIN
Х	<uvlo< td=""><td>Х</td><td>No Flow</td><td>Switch off because of UVLO</td><td>High-Z</td></uvlo<>	Х	No Flow	Switch off because of UVLO	High-Z
<ovp and<br="">>V_{SHRT}</ovp>	>UVLO	Low	$V_{\text{BUS}_\text{SYS}}$ to $V_{\text{BUS}_\text{CON}}$	Current flows through the switch, normal host mode	High-Z
Х	>UVLO	High	No Flow	Switch off	Low
<v<sub>SHRT</v<sub>	>UVLO	Low	$V_{\text{BUS}_\text{SYS}}$ to $V_{\text{BUS}_\text{CON}}$	Current flow through switch, device detects short circuit, current limited to I_{SHRT}	Low
x	Х	Low	>OCP	Device switches off because of overcurrent limit, auto-retrys until <ocp or="" shutdown<br="" thermal="">conditions occur</ocp>	Low
>OVP	>UVLO	Low	No Flow	Switch off because of OVP	Low
Х	Х	Х	No Flow	Thermal Shutdown Condition	Low

Table 8-1. TPD3S714-Q1 V_{BUS} Logic Table

 Table 8-2 shows the TPD3S714-Q1 Data Line Logic Table

Table 8-2. TPD3S714-Q1 Data Line Logic Table

VOLTAGE	CONDITION		CURRENT CONDITION							
VD+/VD-	EN	SWITCHES ON?	COMMENT	FLT PIN						
<ovp< td=""><td>Low</td><td>Yes</td><td>Device operates normally, data transfer can occur</td><td>High-Z</td></ovp<>	Low	Yes	Device operates normally, data transfer can occur	High-Z						
Х	High	No	Switches off	Low						
>OVP	Low	No	Switches off because of OVP limit	Low						
Х	Х	No	Thermal Shutdown Condition	Low						

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPD3S714-Q1 offers fully featured automotive USB2.0 protection including short-to-battery, overcurrent, and ESD protection. Care must be taken during the implementation to make sure the device provides adequate protection to the system.

9.2 Typical Application

Figure 9-1 shows a fully featured USB2.0 high speed port, with an 18-V short-to-battery requirement on the connector side.

Figure 9-1. Typical Application Configuration for TPD3S714-Q1

9.2.1 Design Requirements

For this design example, the input parameters shown in Table 9-1 are used:

Table 9-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Short-to-battery tolerance on VD+, VD–, V _{BUS_CON}	18 V
Maximum current in normal operation on V _{BUS}	500 mA
USB data rate	480 Mbps

9.2.2 Detailed Design Procedure

To begin the design process, the designer must know the following parameters:

- Short-to-Battery tolerance on connector pins
- Maximum current in normal operation on V_{BUS}
- USB Data Rate

9.2.2.1 Short-to-Battery Tolerance

The TPD3S714-Q1 is capable of handling up to 18-V DC on the VD+, VD–, and V_{BUS_CON} pins. In the event of a short-to-battery on V_{BUS_CON} , significant ringing is expected because of the hot plug-like nature of the short-to-battery event. In typical ceramic capacitor configurations, a standard RLC response is expected which results in a ringing of nearly two times the applied DC voltage. The TPD3S714-Q1 is capable of withstanding the transient ringing from hot plug-like events, assuming some precautions are taken.

Careful capacitor selection on the V_{BUS_CON} pin must be observed. A capacitor with a low derating percentage under the applied voltages must be used to prevent excess ringing. In the example, a 1-µF 100-V tolerant ceramic X7R capacitor is used. It is best practice to carefully select the capacitors used in this circuit to prevent derating-based voltage spikes under hot plug events. See the application example graphs, Figure 9-4 and Figure 9-5 to compare ringing of a 100-V capacitor to a 50-V capacitor. Figure 9-6 shows the 100-V capacitor with the TPD3S714-Q1 installed.

Another alternative to a high rated ceramic capacitor is to implement either a standard R-C snubber circuit, or a small external TVS diode. Depending on the short-to-battery tolerance needed, no special precautions may be needed.

For more information on this topic, see the white paper *Designing USB for short-to-battery tolerance in automotive environments*.

9.2.2.2 Maximum Current on V_{BUS}

The TPD3S714-Q1 is capable of operating up to 5500 mA of current (minimum) until going into current limit mode. In this example, the maximum current for USB2.0 of 500 mA has been chosen.

9.2.2.3 USB Data Rate

The TPD3S714-Q1 is capable of operating at the maximum USB2.0 High Speed data rate of 480 Mbps because of the high data switch bandwidth of 1 GHz (typical). In this design example the maximum data rate of 480 Mbps has been chosen.

9.2.3 Application Curves

10 Power Supply Recommendations

10.1 V_{BUS} Path

The V_{BUS_SYS} pins provide power to the chip and supply current through the load switch to V_{BUS_CON}. A 100- μ F bulk capacitor is recommended on V_{BUS_SYS} to supply the USB port and maintain compliance. A 1- μ F capacitor is recommended on the V_{BUS_CON} pin with adequate voltage rating to tolerate short-to-battery conditions. A supply voltage above the UVLO threshold for V_{BUS_SYS} must be supplied for the device to power on.

10.2 V_{IN} Pin

The V_{IN} pin provides a voltage reference for the data switch OVP level as well as a bypass for ESD clamping. A 1- μ F capacitor must be placed as close to the pin as possible and the supply must be set to be above the UVLO threshold for V_{IN}.

11 Layout

11.1 Layout Guidelines

Proper routing and placement maintains signal integrity for high-speed signals. The following guidelines apply to the TPD3S714-Q1:

- Place the bypass capacitors as close as possible to the V_{IN}, V_{BUS_SYS}, and V_{BUS_CON} pins. Capacitors must be attached to a solid ground. This minimizes voltage disturbances during transient events such as short-tobattery, ESD, or overcurrent conditions.
- High speed traces (data switch path) must be routed as straight as possible and any sharp bends must be minimized.

Our standard ESD recommendations apply to the VD+, VD–, and V_{BUS CON} pins as well:

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- Route the protected traces as straight as possible.
- Eliminate any sharp corners on the protected traces between the TVS and the connector by using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.

11.2 Layout Example

Figure 11-1 shows a full layout for a standard USB2.0 port. A common mode choke and inductors are used on the high speed data lines, and the requisite bypassing caps are placed on V_{BUS_CON} , V_{BUS_SYS} , and V_{IN} .

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- TPD3S714-Q1EVM User's Guide
- Reading and Understanding an ESD Protection Datasheet
- ESD Layout Guide

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OUTLINE

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MO-137, variation AB.

www.ti.com

EXAMPLE BOARD LAYOUT

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

www.ti.com

EXAMPLE STENCIL DESIGN

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.9. Board assembly site may have different recommendations for stencil design.

www.ti.com

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPD3S714QDBQRQ1	ACTIVE	SSOP	DBQ	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	RJ714Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD3S714QDBQRQ1	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Aug-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPD3S714QDBQRQ1	SSOP	DBQ	16	2500	367.0	367.0	35.0

PACKAGE OUTLINE

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- This dimension does not include interlead flash.
 Reference JEDEC registration MO-137, variation AB.

EXAMPLE BOARD LAYOUT

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated