

Product Specification

NHD-2.8-25664UCY2

Graphic OLED Display Module

NHD- Newhaven Display

2.8- 2.8" Diagonal Size

25664- 256 x 64 Pixel Resolution

UC- Model

Y- Emitting Color: Yellow

2- 2.8V to 3.5V Operation

Table of Contents

Document Revision History	2
Mechanical Drawing	3
Pin Description	4
Wiring Diagrams	5
On-Board Jumper Options	6
Electrical Characteristics	7
Optical Characteristics	7
Controller Information	8
MPU Interface	8
Example Initialization Sequence	9
Quality Information	10

Additional Resources

- Support Forum: https://support.newhavendisplay.com/hc/en-us/community/topics
- ➤ **GitHub:** https://github.com/newhavendisplay
- **Example Code:** https://support.newhavendisplay.com/hc/en-us/categories/4409527834135-Example-Code/
- **Knowledge Center:** https://www.newhavendisplay.com/knowledge center.html
- ➤ Quality Center: https://www.newhavendisplay.com/quality center.html
- Precautions for using LCDs/LCMs: https://www.newhavendisplay.com/specs/precautions.pdf
- ➤ Warranty / Terms & Conditions: https://www.newhavendisplay.com/terms.html

Document Revision History

Revision	Date	Date Description						
0	05/01/2011	Initial Product Release	-					
1	02/21/2013	Electrical Characteristics and Mechanical Drawing Updated	JN					
2	03/16/2020	Electrical Characteristics & Segment Layout Updated	SB					
3	10/23/2020	Updated Supply Voltage Range: (3V/3.3V/3.5V) to (2.8V/3V/3.3V)	AS					
4	07/25/2022	PCB Redesign offering Multiple Driving Methods. Electrical Characteristics Updated. Mechanical Drawing Updated.	CJ					
5	01/12/2023	Updated Mechanical Drawing	KL					

Pin Description

Parallel Interface:

Pin No.	Symbol	External Connection	Function Description
1	V _{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for OLED and logic.
3	NC or	-	Default: No Connect
	BC_VDD		Supply Voltage for Boost Converter: See Jumper Option #1
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data
5	R/W or /WR	MPU	6800-interface:
			Read/Write select signal, R/W=1: Read, R/W=0: Write
			8080-interface:
			Active LOW Write signal.
6	E or /RD	MPU	6800-interface:
			Operation enable signal. Falling edge triggered.
			8080-interface:
			Active LOW Read signal.
7-14	DB0 – DB7	MPU	8-bit Bi-directional data bus lines.
15	NC or VCC	-	Default: No Connect
			Supply Voltage for OLED Panel: See Jumper Option #2
16	/RES	MPU	Active LOW Reset signal.
17	/CS	MPU	Active LOW Chip Select signal.
18	NC or G_VDD	-	Default: No Connect
			Supply Voltage for Internal Regulator: See Jumper Option #3
19	BS1	MPU	MPU Interface Select signal.
20	BS0	MPU	MPU Interface Select signal.

Serial Interface:

Pin No.	Symbol	External Connection	Function Description					
1	V _{SS}	Power Supply	Ground					
2	V_{DD}	V _{DD} Power Supply Supply Voltage for OLED and logic.						
3	NC or	-	Default: No Connect					
	BC_VDD		Supply Voltage for Boost Converter: See Jumper Option #1					
4	D/C	MPU	Register select signal. D/C=0: Command, D/C=1: Data					
			Tie LOW for 3-wire Serial Interface.					
5-6	VSS	Power Supply	Ground					
7	SCLK	MPU	Serial Clock signal.					
8	SDIN	MPU	Serial Data Input signal.					
9	NC	-	No Connect					
10-14	VSS	Power Supply	Ground					
15	NC or VCC	-	Default: No Connect					
			Supply Voltage for OLED Panel: See Jumper Option #2					
16	/RES	MPU	Active LOW Reset signal.					
17	/CS	MPU	Active LOW Chip Select signal.					
18	NC or G_VDD	-	Default: No Connect					
			Supply Voltage for Internal Regulator: See Jumper Option #3					
19	BS1	MPU	MPU Interface Select signal.					
20	BS0	MPU	MPU Interface Select signal.					

MPU Interface Pin Selections

Pin Name	6800 Parallel 8-bit interface	8080 Parallel 8-bit interface	3-wire Serial Interface	4-wire Serial Interface
BS1	1	1	0	0
BS0	1	0	1	0

MPU Interface Pin Assignment Summary

Bus			D	ata/C	omm	and Interfa		Control Signals					
Interface	D7	D7 D6 D5 D4 D3 D2 D1 D0								R/W	/cs	D/C	/RES
8-bit 6800					D[7:0]			E	R/W	/CS	D/C	/RES
8-bit 8080					D[7:0]			/RD	/WR	/CS	D/C	/RES
3-wire SPI		Т	ie LO\	٧		NC	SDIN	SCLK	Tie LOW		/CS	Tie LOW	/RES
4-wire SPI	Tie LOW					NC	SDIN	SCLK	Tie	LOW	/CS	D/C	/RES

Wiring Diagrams

On-Board Jumper Options

Default Jumper Setting

R14	R15	R18	R1	Description			
Close	Open	Open	Open	(default) OLED Logic Circuit + Boost converter + OLED panel are powered from VDD (pin #2). This allows the full module to be powered by a single low-voltage supply.			

Jumper Option #1 - Independent Supply Voltage for Boost Converter (BC VDD)

R14	R15	R18	R1	Description			
Open	Close	Open	Open	Boost converter + OLED panel are powered from BC_VDD (pin #3). OLED Logic Circuit is powered from VDD (pin #2). This allows for increased efficiency through the boost converter, by allowing a supply voltage up to +12V at its input, BC_VDD (pin #3).			

Jumper Option #2 – External Supply Voltage for OLED Panel (VCC)

R14	R15	R18	R1	Description			
Open	Open	Close	Open	OLED panel is powered from VCC (pin #15) – boost converter is not used. OLED Logic Circuit is powered from VDD (pin #2). This allows for maximum module efficiency, and drastically reduced total current consumption.			

Jumper Option #3 – External Supply Voltage for Internal Regulator (G_VDD)

R14	R15	R18	R1	Description			
S	ee Descriptio	n	Close	OLED Internal Regulator + Logic Circuit are powered from G_VDD (pin #18) – boost converter is powered from VDD (pin #2). Disabling the internal regulator reduces power consumption. Booster circuit must be driven by alternative method.			

Jumper Option #2 (VCC)

Jumper Option #1 (BC VDD)

Jumper Option #3 (G_VDD)

For detailed electrical information on each jumper option, please see the Electrical Characteristics table below.

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Top	Absolute Max	-40	-	+85	°C
Storage Temperature Range	T _{st}	Absolute Max	-40	-	+90	°C
		Default Jumper Setting				
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V
Supply Current for Module	IDD	VDD=3.3V, 100% ON	-	310	340	mA
		Jumper Option #1				
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V
Supply Current for Module	IDD	V _{DD} =3.3V	-	170	200	μΑ
Supply Voltage for Boost Converter	BC_VDD	-	2.8	-	12	V
Supply Current for Deast Convertor	חכ וחם	BC_VDD=5.0V, 100% ON	-	170	200	mA
Supply Current for Boost Converter	BC_IDD	BC_VDD=12.0V, 100% ON	-	70	80	mA
		Jumper Option #2				
Supply Voltage for Module	VDD	-	2.8	3.3	3.5	V
Supply Current for Module	IDD	V _{DD} =3.3V	-	170	200	μΑ
Supply Voltage for OLED Panel	VCC	-	11.5	12	12.5	V
Supply Current for OLED Panel	ICC	VCC=12V, 100% ON	-	45	55	mA
		Jumper Option #3				
Supply Voltage for Logic	G_VDD	-	2.4	2.5	2.6	V
Supply Current for Module	G_IDD	VDD=3.3V	-	100	120	μΑ
Sleep Mode Current	IDD _{SLEEP}	-	-	25	120	μΑ
"H" Level input	Vih	-	0.8*VDD	-	VDD	V
"L" Level input	Vil	-	VSS	-	0.2*VDD	V
"H" Level output	V _{oh}	-	0.9*VDD	-	VDD	V
"L" Level output	Vol	-	VSS	-	0.1*VDD	V

Note: The electrical characteristics shown above for Jumper Option #1 and Jumper Option #2 apply only when the on-board jumpers are configured accordingly. By default, only Default Jumper Setting supply voltage and current (in bold) need to be considered. For details, see On-Board Jumper Options section on previous page.

Optical Characteristics

	Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit
Omtima	Тор		φΥ+		-	80	-	0
Optimal Viewing	Bott	tom	φΥ-		-	80	-	0
Angles	Left		θХ-	-	-	80	-	0
Aligies	Right		θХ+		•	80	-	0
Contrast Rati	io		CR	-	10,000:1	•	-	-
Dosnonso Ti	ina a	Rise	T _R	-	ı	10	-	us
Response Ti	Fall		T _F	-	ı	10	-	us
Brightness		L _V	$T_{OP} = 25^{\circ}C$	60	80	-	cd/m ²	
Lifetime			-	50% Checkerboard	40,000	60,000	-	Hrs.

Note: Lifetime at typical temperature is based on accelerated high-temperature operation. Lifetime is tested at average 50% pixels on and is rated as Hours until **Half-Brightness**. The Display OFF command can be used to extend the lifetime of the display. Luminance of active pixels will degrade faster than inactive pixels. Residual (burn-in) images may occur. To avoid this, every pixel should be illuminated uniformly.

Controller Information

Built in SSD1322 Controller: https://support.newhavendisplay.com/hc/en-us/articles/4414477846679-SSD1322

MPU Interface

6800-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, R/W, D/C, E, and /CS.

A LOW on R/W indicates write operation, and HIGH on R/W indicates read operation.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

The E input serves as data latch signal, while /CS is LOW. Data is latched at the falling edge of E signal.

Function	E	R/W	/cs	D/C
Write Command	\rightarrow	0	0	0
Read Status	+	1	0	0
Write Data	\downarrow	0	0	1
Read Data	\downarrow	1	0	1

8080-MPU Parallel Interface

The parallel interface consists of 8 bi-directional data pins, /RD, /WR, D/C, and /CS.

A LOW on D/C indicates "Command" read or write, and HIGH on D/C indicates "Data" read or write.

A rising edge of /RS input serves as a data read latch signal while /CS is LOW.

A rising edge of /WR input serves as a data/command write latch signal while /CS is LOW.

Function	/RD	/WR	/cs	D/C
Write Command	1		0	0
Read Status	\uparrow	1	0	0
Write Data	1	\uparrow	0	1
Read Data	\uparrow	1	0	1

Alternatively, /RD and /WR can be kept stable while /CS serves as the data/command latch signal.

Function	/RD	/WR	/cs	D/C
Write Command	1	0	\uparrow	0
Read Status	0	1	\uparrow	0
Write Data	1	0	\uparrow	1
Read Data	0	1	\uparrow	1

Serial Interface (4-wire)

The 4-wire serial interface consists of serial clock SCLK, serial data SDIN, D/C, and /CS.

D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, and R/W should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	0	\uparrow
Write Data	Tie LOW	Tie LOW	0	1	\uparrow

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6,...D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the GDRAM or command register in the same clock. *Note: Read is not available in serial mode*

Serial Interface (3-wire)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN, and /CS. D0 acts as SCLK and D1 acts as SDIN. D2 should be left open. D3~D7, E, R/W, and D/C should be connected to GND.

Function	/RD	/WR	/cs	D/C	D0
Write Command	Tie LOW	Tie LOW	0	Tie LOW	\uparrow
Write Data	Tie LOW	Tie LOW	0	Tie LOW	\uparrow

SDIN is shifted into an 9-bit shift register on every rising edge of SCLK in the order of D/C, D7, D6,...D0. D/C (first bit of the sequential data) will determine if the following data byte is written to the Display Data RAM (D/C = 1) or the command register (D/C = 0). Note: Read is not available in serial mode

Example Initialization Sequence

```
Set Command Lock(0x12);
                                      // Unlock Basic Commands (0x12/0x16)
Set Display On Off(0x00);
                                      // Display Off (0x00/0x01)
Set Column Address(0x1C,0x5B);
Set Row Address(0x00,0x3F);
Set_Display_Clock(0x91);
                                      // Set Clock as 80 Frames/Sec
Set Multiplex Ratio(0x3F);
                                      // 1/64 Duty (0x0F~0x3F)
Set_Display_Offset(0x00);
                                      // Shift Mapping RAM Counter (0x00~0x3F)
Set Start Line(0x00);
                                      // Set Mapping RAM Display Start Line (0x00~0x7F)
Set_Remap_Format(0x14);
                                      // Set Horizontal Address Increment
                                          Column Address 0 Mapped to SEG0
                                      //
                                          Disable Nibble Remap
                                          Scan from COM[N-1] to COM0
                                      // Disable COM Split Odd Even
                                          Enable Dual COM Line Mode
Set GPIO(0x00);
                                      // Disable GPIO Pins Input
                                      // Enable Internal VDD Regulator
Set_Function_Selection(0x01);
Set Display Enhancement A(0xA0,0xFD);
                                             // Enable External VSL
Set_Contrast_Current(0x9F);
                                      // Set Segment Output Current
Set_Master_Current(0x0F);
                                      // Set Scale Factor of Segment Output Current Control
//Set_Gray_Scale_Table();
                                      // Set Pulse Width for Gray Scale Table
Set_Linear_Gray_Scale_Table();
                                      //set default linear gray scale table
Set Phase Length(0xE2);
                                      // Set Phase 1 as 5 Clocks & Phase 2 as 14 Clocks
Set_Display_Enhancement_B(0x20);
                                      // Enhance Driving Scheme Capability (0x00/0x20)
Set Precharge Voltage(0x1F);
                                      // Set Pre-Charge Voltage Level as 0.60*VCC
Set Precharge Period(0x08);
                                      // Set Second Pre-Charge Period as 8 Clocks
Set VCOMH(0x07);
                                      // Set Common Pins Deselect Voltage Level as 0.86*VCC
                                      // Normal Display Mode (0x00/0x01/0x02/0x03)
Set_Display_Mode(0x02);
Set_Partial_Display(0x01,0x00,0x00);
                                      // Disable Partial Display
Set_Display_On_Off(0x01);
```


Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Test the endurance of the display at high storage temperature.	+90°C, 240hrs	2
Low Temperature storage	Test the endurance of the display at low storage temperature.	-40°C, 240hrs	1,2
High Temperature Operation	Test the endurance of the display by applying electric stress (voltage & current) at high temperature.	+85°C, 240hrs	2
Low Temperature Operation	Test the endurance of the display by applying electric stress (voltage & current) at low temperature.	-40°C, 240hrs	1,2
High Temperature / Humidity Operation	Test the endurance of the display by applying electric stress (voltage & current) at high temperature with high humidity.	+60°C, 90% RH, 240hrs	1,2
Thermal Shock resistance	Test the endurance of the display by applying electric stress (voltage & current) during a cycle of low and high temperatures.	-40°C,30min -> 25°C,5min -> 85°C,30min = 1 cycle 100 cycles	
Vibration test	Test the endurance of the display by applying vibration to simulate transportation and use.	10-22Hz, 1.5mm amplitude. 22-500Hz, 1.5G 30min in each of 3 directions X, Y, Z	3
Atmospheric Pressure test	Test the endurance of the display by applying atmospheric pressure to simulate transportation by air.	115mbar, 40hrs	3
Static electricity test	Test the endurance of the display by applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 2 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Evaluation Criteria:

- 1: Display is fully functional during operational tests and after all tests, at room temperature.
- 2: No observable defects.
- 3: Luminance >50% of initial value.
- 4: Current consumption within 50% of initial value