
TMS570LS0x32 Microcontroller
Silicon Revision A

Silicon Errata

Literature Number: SPNZ197F
March 2013–Revised May 2016

2 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

Table of Contents

Contents

1 Device Nomenclature.. 4
2 Revision Identification .. 5
3 Known Design Exceptions to Functional Specifications .. 6
4 Revision History... 40

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com

3SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

List of Figures

List of Figures
1 Device Revision Code Identification... 5

List of Tables
1 Known Design Exceptions to Functional Specifications ... 6
2 Document Revision History ... 40

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

4 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

Silicon Errata
SPNZ197F–March 2013–Revised May 2016

TMS570LS0x32 Microcontroller

This document describes the known exceptions to the functional specifications for the device.

1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
devices. Each commercial family member has one of three prefixes: TMX, TMP, or TMS (for example,
TMS570LS3137). These prefixes represent evolutionary stages of product development from engineering
prototypes (TMX) through fully qualified production devices/tools (TMS).

Device development evolutionary flow:

TMX — Experimental device that is not necessarily representative of the final device's electrical
specifications.

TMP — Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.

TMS — Fully-qualified production device.

TMX and TMP devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices have been characterized fully, and the quality and reliability of the device have been
demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

0432APZQQ1

#######

TMS570LS

Device Revision Code

www.ti.com Revision Identification

5SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

2 Revision Identification
Figure 1 provides an example of the TMS570LSx device markings. The device revision can be determined
by the symbols marked on the top of the package.

Figure 1. Device Revision Code Identification

Silicon revision is identified by a device revision code. The code is of the format TMS570LS0432xPZQQ1,
where "x" denotes the silicon revision. If x is "A" in the device part number, it represents silicon revision A.
If the device uses the initial silicon version, no revision number is included.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

Known Design Exceptions to Functional Specifications www.ti.com

6 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

3 Known Design Exceptions to Functional Specifications
The following table lists the known exceptions to the functional specifications for the device.

Table 1. Known Design Exceptions to Functional Specifications
Title .. Page

CORTEX-R4#26 (ARM ID-577077) — Thumb STREXD Treated As NOP If Same Register Used For Both Source
Operands .. 8

CORTEX-R4#27 (ARM ID-412027) — Debug Reset Does Not Reset DBGDSCR When In Standby Mode 9
CORTEX-R4#33 (ARM ID-452032) — Processor Can Deadlock When Debug Mode Enables Cleared 10
CORTEX-R4#46 (ARM ID-599517) — CP15 Auxiliary ID And Prefetch Instruction Accesses Are UNDEFINED 11
CORTEX-R4#58 (ARM ID-726554) — DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set 12
CORTEX-R4#61 (ARM ID-720270) — Latched DTR-Full Flags Not Updated Correctly On DTR Access. 13
CORTEX-R4#66 (ARM ID-754269) — Register Corruption During a Load-Multiple Instruction at an Exception Vector . 14
CORTEX-R4#67 (ARM ID-758269) — Watchpoint On A Load Or Store Multiple May Be Missed. 15
DCC#24 — Single Shot Mode Count may be Incorrect ... 16
DEVICE#037 — CPU Abort Not Generated on Write to Unimplemented MCRC Space 17
DEVICE#038 — Read from E-fuse controller register generates abort ... 18
DEVICE#41 — Power-on Reset During Bank 7 Sector Erase May Corrupt Other Sectors 19
DEVICE#42 — Reads of Bank7 may be Corrupted by Short Glitches on nPORRST Pin 20
DEVICE#B066 — HCLK Stops Prematurely when Executing from Flash .. 21
FMC#79 — Abort on Unaligned Access at End of Bank .. 22
GCM#59 — Oscillator can be disabled while PLL is running ... 23
MCRC#18 — CPU Abort Generated on Write to Implemented CRC Space After Write to Unimplemented CRC Space 24
MIBSPI#110 — Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data Incorrectly for Slow

SPICLK Frequencies and for Clock Phase = 1 ... 25
MIBSPI#111 — Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is Enabled 26
MIBSPI#139 — Mibspi RX RAM RXEMPTY bit does not get cleared after reading ... 27
NHET#54 — PCNT incorrect when low phase is less than one loop resolution ... 28
NHET#55 —More than one PCNT instruction on the same pin results in measurement error 29
PBIST#4 — PBIST ROM Algorithm Doesn't Execute ... 31
SSWF021#44 — Change to PLL Lock Time .. 32
SSWF021#45 — PLL Fails to Start .. 33
STC#26 — The value programmed into the Self Test Controller (STC) Self-Test Run Timeout Counter Preload

Register (STCTPR) is restored to its reset value at the end of each self test run. 34
STC#29 — Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a system reset [internal or

external] occurs while a CPU Self-Test is executing. .. 35
STC#31 — Self Test Controller Returns a False Failure .. 36
SYS#046 — Clock Source Switching Not Qualified With Clock Source Enable And Clock Source Valid 37
SYS#102 — Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear 38
VIM#27 — Unexpected phantom interrupt .. 39

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com Known Design Exceptions to Functional Specifications

7SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

CORTEX-R4#26 (ARM ID-577077) — Thumb STREXD Treated As NOP If Same Register Used For Both Source Operands
www.ti.com

8 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#26 (ARM ID-577077) Thumb STREXD Treated As NOP If Same Register Used For Both
Source Operands

Severity 3-Medium

Expected Behavior The STREXD instruction should work in Thumb mode when Rt and Rt2 are the same
register.

Issue The ARM Architecture permits the Thumb STREXD instruction to be encoded with the
same register used for both transfer registers (Rt and Rt2). Because of this issue, the
Cortex-R4 processor treats such encoding as UNPREDICTABLE and executes it as a
NOP.

Condition This error occurs when the processor is in Thumb state and a STREXD instruction is
executed with Rt = Rt2.

Note: this instruction is new in ARM Architecture version 7 (ARMv7). It is not present in
ARMv6T2 or other earlier architecture versions.

Implication(s) If this error occurs, the destination register, Rd, which indicates the status of the
instruction, is not updated and no memory transaction takes place. If the software is
attempting to perform an exclusive read-modify-write sequence, then it might either
incorrectly complete without memory being written, or loop forever attempting to
complete the sequence.

Workaround(s) This issue can be avoided by using two different registers for the data to be transferred
by a STREXD instruction. This may involve copying the data in the transfer register to a
second, different register for use by the STREXD.

Comment: TI Code Generation tool does not generate exclusive access load or store
instructions. On these Hercules devices there is no reason to use exclusive access
instructions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com CORTEX-R4#27 (ARM ID-412027) — Debug Reset Does Not Reset DBGDSCR When In Standby Mode

9SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#27 (ARM ID-412027) Debug Reset Does Not Reset DBGDSCR When In Standby Mode

Severity 3-Medium

Expected Behavior The debug reset input, PRESETDBGn, resets the processor's debug registers as
specified in the ARMv7R Architecture. The debug reset is commonly used to set the
debug registers to a known state when a debugger is attached to the target processor.

Issue When the processor is in Standby Mode and the clock has been gated off,
PRESETDBGn fails to reset the Debug Status and Control Register (DBGDSCR).

Condition
1. The DBGDSCR register has been written so that its contents differ from the reset

values (most fields in this register reset to zero, though a few are UNKNOWN at
reset), and

2. The processor is in Standby Mode, and the clocks have been gated off, that is
STANDBYWFI is asserted, and

3. The debug reset, PRESETDBGn, is asserted and de-asserted while the processor
clocks remain gated off.

Note: the debug reset is commonly used to set the debug registers to a known state
when a debugger is attached to the target processor.

Implication(s) This issue affects scan based debug utility developers. The end user should not be
affected by this issue if the development tool vendor has implemented the workaround.

If this issue occurs, then after the reset, the DBGDSCR register contains the values that
it had before reset rather than the reset values. If the debugger relies on the reset
values, then it may cause erroneous debug of the processor. For example, the
DBGDSCR contains the ExtDCCmode field which controls the Data Communications
Channel (DCC) access mode. If this field was previously set to Fast mode but the
debugger assumes that it is in Non-blocking mode (the reset value) then debugger
accesses to the DCC will cause the processor to execute instructions which were not
expected.

Workaround(s) This can be avoided by a workaround in the debug control software. Whenever the
debugger (or other software) generates a debug reset, follow this with a write of zero to
the DBGDSCR which forces all the fields to their reset values.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

CORTEX-R4#33 (ARM ID-452032) — Processor Can Deadlock When Debug Mode Enables Cleared www.ti.com

10 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#33 (ARM ID-452032) Processor Can Deadlock When Debug Mode Enables Cleared

Severity 3-Medium

Expected Behavior The Cortex-R4 processor supports two different debugging modes: Halt-mode and
Monitor-mode. Both modes can be disabled. Bits [15:14] in the Debug Status and
Control Register (DBGDSCR) control which, if any, mode is enabled. Additionally, debug
events can only occur if the invasive debug enable pin, DBGEN is asserted. Deadlocks
should not occur when the debug mode is changed.

Issue If there are active breakpoints or watchpoints at the time when the debugging modes are
disabled via the DBGDSCR or DBGEN, this issue can cause the processor to deadlock
(in the case of a breakpoint) or lose data (in the case of a watchpoint).

Condition
1. DBGEN is asserted and the processor is running, and
2. At least one breakpoint or watchpoint is programmed and active, and
3. Either halt-mode debugging or monitor mode debugging is enabled, and
4. Either an instruction is fetched which matches a breakpoint, or an item of data is

accessed which matches a watchpoint, and
5. After the instruction or data is accessed, but before the instruction completes

execution, either the DBGEN input is de-asserted or both halt-mode and monitor-
mode debugging are disabled by means of a write the DBGDSCR.

Implication(s) This issue affects scan based debug utility developers. The end user should not be
affected by this issue if the development tool vendor has implemented the workaround.

Depending on which of the conditions are met, the processor will either lose data or
deadlock. If the processor deadlocks because of this issue it will still respond to
interrupts provided they are not masked.

Workaround(s) This issue can be avoided by ensuring that all watchpoints and breakpoints are made
inactive before either de-asserting DBGEN or changing the debug mode enables.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com CORTEX-R4#46 (ARM ID-599517) — CP15 Auxiliary ID And Prefetch Instruction Accesses Are UNDEFINED

11SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#46 (ARM ID-599517) CP15 Auxiliary ID And Prefetch Instruction Accesses Are
UNDEFINED

Severity 3-Medium

Expected Behavior The ARMv7-R architecture requires implementation of the following two features in
CP15:

1. An Auxiliary ID Register (AIDR), which can be read in privileged modes, and the
contents and format of which are IMPLEMENTATION DEFINED.

2. The operation to prefetch an instruction by MVA, as defined in the ARMv6
architecture, to be executed as a NOP.

Because of this issue, both of these CP15 accesses generate an UNDEFINED exception
on Cortex-R4.

Issue CP15 accesses to Auxiliary ID Register (AIDR) or an operation to prefetch an instruction
by MVA will generate an UNDEFINED exception on Cortex-R4.

Condition Either of the following instructions is executed in a privileged mode:
• MRC p15,1,<Rt>,c0,c0,7 ; Read IMPLEMENTATION DEFINED Auxiliary ID Register
• MCR p15,0,<Rt>,c7,c13,1 ; NOP, was Prefetch instruction by MVA in ARMv6

Implication(s) This issue should only affect portable code supposed to run on different ARM
architecture or code running on cached Cortex-R4. Code written for Hercules products
should not be affected.

Workaround(s) The CP15 AIDR and MVA registers are not implemented on Cortex-R4 CPU. To avoid
this issue, don't read or write to them.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

CORTEX-R4#58 (ARM ID-726554) — DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set www.ti.com

12 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#58 (ARM ID-726554) DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set

Severity 3-Medium

Expected Behavior When the DBGDSCR.ADAdiscard bit is set, asynchronous data aborts are discarded,
except for setting the DBGDSCR.ADAbort sticky flag. The Cortex-R4 processor ensures
that all possible outstanding asynchronous data aborts have been recognized before it
enters debug halt state. The flag is immediately on entry to debug halt state to indicate
that the debugger does not need to take any further action to determine whether all
possible outstanding asynchronous aborts have been recognized.

Issue Because of this issue, the Cortex-R4 processor also sets the DBGDSCR.ADAdiscard bit
when the DBGDSCR.DBGack bit is set. This can cause the DBGDSCR.ADAbort bit to
become set when the processor is not in debug halt state, and it is not cleared when the
processor enters debug halt state. However, the processor does not discard the abort. It
is pending or generates an exception as normal.

Condition
1. The processor is not in debug halt state
2. The DBGDSCR.DBGack bit is set
3. An asynchronous data abort (for example, SLVERR response to a store to Normal-

type memory) is recognized

NOTE: it is not expected that DBGDSCR.DBGack will be set in any Cortex-R4
system

Implication(s) Hercules users will not be impacted by this issue, because Code Composer Studio takes
care of this condition.

If this issue occurs, and the processor subsequently enters debug halt state, the
DBGDSCR.ADAbort bit will be set, when in fact no asynchronous data abort has
occurred in debug state. Before exiting debug state, the debugger will check this bit and
will typically treat it as an error. If no other asynchronous data abort has occurred in
debug state, this is a false error.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com CORTEX-R4#61 (ARM ID-720270) — Latched DTR-Full Flags Not Updated Correctly On DTR Access.

13SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#61 (ARM ID-720270) Latched DTR-Full Flags Not Updated Correctly On DTR Access.

Severity 3-Medium

Expected Behavior When the debug Data Transfer Register (DTR) is in non-blocking mode, the latched
DTR-full flags (RXfull_l and TXfull_l) record the state of the DTR registers as observed
by the debugger and control the flow of data to and from the debugger to prevent race
hazards. For example, when the target reads data from DBGDTRRXint, the associated
flag RXfull is cleared to indicate that the register has been drained, but the latched value
Rxfull_l remains set. Subsequent debugger writes to DBGDTRRXext are ignored
because RXfull_l is set. RXfull_l is updated from RXfull when the debugger reads
DBGDSCRext such that a debugger write to DBGDTRRXext will only succeed after the
debugger has observed that the register is empty. The ARMv7 debug architecture
requires that RXfull_l be updated when the debugger reads DBGDSCRext and when it
writes DBGDTRRXext. Similarly, TXfull_l must be updated when the debugger reads
DBGDSCRext and when it reads DBGDTRTXext.

Issue Because of this issue, RXfull_l and TXfull_l are only updated when the debugger reads
DBGDSCRext.

Condition The DTR is in non-blocking mode, that is, DBGDSCR.ExtDCCmode is set to 0b00 and
EITHER:
1. The debugger reads DBGDSCRext which shows that RXfull is zero, that is,

DBGDTRRX is empty, and then
2. The debugger writes data to DBGDTRRXext, and
3. Without first reading the DBGDSCRext, and before the processor has read from

DBGDTRRXint, the debugger performs another write to DBGDTRRXext.
OR
1. The debugger reads DBGDSCRext which shows that TXfull is one, that is,

DBGDTRTX is full, and then
2. The debugger reads data from DBGDTRTXext, and then
3. The processor writes new data into DBGDTRTXint, and
4. Without first reading the DBGDSCRext, the debugger performs another read from

DBGDTRTXext.

Implication(s) The ARMv7 debug architecture requires the debugger to read the DBGDSCRext before
attempting to transfer data via the DTR when in non-blocking mode. This issue only has
implications for debuggers that violate this requirement. If the issue occurs via data
transfer, data loss may occur. The architecture requires that data transfer never occur.

Texas Instruments has verified that TI's Code Composer Studios IDE is not affected by
this issue.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

CORTEX-R4#66 (ARM ID-754269) — Register Corruption During a Load-Multiple Instruction at an Exception Vector
www.ti.com

14 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#66 (ARM ID-754269) Register Corruption During a Load-Multiple Instruction at an
Exception Vector

Severity 3-Medium

Expected Behavior LDM will execute properly when used as the first instruction of an exception routine.

Issue Under certain circumstances, a load multiple instruction can cause corruption of a
general purpose register.

Condition All the following conditions are required for this issue to occur:
1. A UDIV or SDIV instruction is executed with out-of-order completion of divides

enabled
2. A multi-cycle instruction is partially executed before being interrupted by either an

IRQ, FIQ or imprecise abort. In this case, a multi-cycle instruction can be any of the
following:
• LDM/STM that transfers 3 or more registers
• LDM/STM that transfers 2 registers to an unaligned address without write back
• LDM/STM that transfers 2 registers to an aligned address with write back
• TBB/TBH

3. A load multiple instruction is executed as the first instruction of the exception handler
4. The load multiple instruction itself is interrupted either by an IRQ, FIQ, imprecise

abort or external debug halt request.

This issue is very timing sensitive and requires the UDIV or SDIV to complete when the
load multiple is in the Issue stage of the CPU pipeline. The register that is corrupted is
not necessarily related to the load-multiple instruction and will depend on the state in the
CPU store pipeline when the UDIV or SDIV completes.

Implication(s) For practical systems, it is not expected that an interruptible LDM will be executed as the
first instruction of an exception handler, because the handler is usually required to save
the registers of the interrupted context. Therefore, it is not expected that this issue has
any implications for practical systems. If the situation of the issue occurs it will result in
the corruption of the register bank state and could cause a fatal failure if the corrupted
register is subsequently read before being written.

Workaround(s) To work around this issue, set bit [7] of the Auxiliary Control Register to disable out-of-
order completion for divide instructions. Code performance may be reduced depending
on how often divide operations are used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com CORTEX-R4#67 (ARM ID-758269) — Watchpoint On A Load Or Store Multiple May Be Missed.

15SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

CORTEX-R4#67 (ARM ID-758269) Watchpoint On A Load Or Store Multiple May Be Missed.

Severity 3-Medium

Expected Behavior The Cortex-R4 supports synchronous watchpoints. This implies that for load and store
multiples, a watchpoint on any memory access will generate a debug event on the
instruction itself.

Issue Due to this issue, certain watchpoint hits on multiples will not generate a debug event.

Condition All the following conditions are required for this issue to occur:
1. A load or store multiple instruction is executed with at least 5 registers in the register

list.
2. The address range accessed corresponds to Strongly-Ordered or Device memory.
3. A watchpoint match is generated for an access that does not correspond to either the

first two or the last two registers in the list.

Under these conditions the processor will lose the watchpoint. Note that for a "store
multiple" instruction, the conditions are also affected by pipeline state making them
timing sensitive.

Implication(s) Due to this issue, a debugger may not be able to correctly watch accesses made to
Device or Strongly-ordered memory. The ARM architecture recommends that
watchpoints should not be set on individual Device or Strongly-ordered addresses that
can be accessed as part of a load or store multiple. Instead, it recommends the use of
the address range masking functionality provided to set watchpoints on an entire region,
ensuring that the watchpoint event will be seen on the first access of a load or store
multiple to this region.

If this recommendation is followed, this issue will not occur.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

DCC#24 — Single Shot Mode Count may be Incorrect www.ti.com

16 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DCC#24 Single Shot Mode Count may be Incorrect

Severity 3-Medium

Expected Behavior When the first clock source counts down to zero, the countdown value remaining for the
other clock source is accurately captured.

Issue The first issue is that there is an offset in starting and stopping the two counters due to
synchronization with VCLK that leads to a fixed offset. The second issue is that the value
remaining in the counter that did not reach zero may be latched while the bits are in
transition, giving an erroneous value.

Condition When used in single shot mode and the count value captured is not from VCLK.

Implication(s) The cycle count captured may be incorrect.

Workaround(s) Static frequency offset can be removed by making two measurements and subtracting.
The sporadic offset can be removed by making multiple measurements and discarding
outliers -- an odd filtering algorithm.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com DEVICE#037 — CPU Abort Not Generated on Write to Unimplemented MCRC Space

17SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DEVICE#037 CPU Abort Not Generated on Write to Unimplemented MCRC Space

Severity 4-Low

Expected Behavior A write to the illegal address region of the MCRC module will generate an abort

Issue A CPU Abort does not get generated per the following condition:

Condition When a normal mode write to an illegal address region of MCRC register space is

followed by a debug mode access.

Implication(s) When debugging, either a breakpoint on the instruction after the illegal write, or single

stepping through the illegal write will not generate an abort.

Workaround(s) None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

DEVICE#038 — Read from E-fuse controller register generates abort www.ti.com

18 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DEVICE#038 Read from E-fuse controller register generates abort

Severity 2-High

Expected Behavior When the peripheral frame for the e-fuse controller is configured as "device" memory,
the e-fuse control registers should be able to be read and written in any sequence
without generating an abort.

Issue When the peripheral frame for the e-fuse controller is configured as "device" memory
and there are three or more writes to e-fuse control registers followed by a read from an
e-fuse control register, a data abort is generated.

Condition This issue occurs when the peripheral frame for the e-fuse controller is configured as
"device" memory and there are three or more writes to the e-fuse control registers
followed by a read.

Implication(s) The user will have to insure there are no more than 2 consecutive writes to the e-fuse
control registers without a read separating them.

Workaround(s) To avoid this issue, the user can insert a dummy e-fuse control register read after every
two writes to the e-fuse control registers.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com DEVICE#41 — Power-on Reset During Bank 7 Sector Erase May Corrupt Other Sectors

19SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DEVICE#41 Power-on Reset During Bank 7 Sector Erase May Corrupt Other Sectors

Severity 3-Medium

Expected Behavior A power-on reset (nPORRST) during sector erase will leave that sector in an unknown
state, however it should not affect sectors other than the one being erased.

Issue A power-on reset while doing a sector erase may corrupt other sectors. Typically sector
zero is corrupted when trying to erase one of the other sectors.

Condition Doing sector erase of bank 7 only

Implication(s) Data in the other sector will be partially erased. This will likely result in ECC errors when
trying to read data from that sector.

Workaround(s) Before starting the sector erase, select bank 7 by writing 0x7 to FMAC (0xFFF87050)
then write to the bank 7 FSM_Sector register (0xFFF872A4) only enabling the sector
desired to be erased.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

DEVICE#42 — Reads of Bank7 may be Corrupted by Short Glitches on nPORRST Pin www.ti.com

20 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DEVICE#42 Reads of Bank7 may be Corrupted by Short Glitches on nPORRST Pin

Severity 3-Medium

Expected Behavior Glitches on nPORRST less than 475ns in length are ignored by the device

Issue Glitches on nPORRST may reset bank 7 of the flash without causing a CPU reset

Condition Low going voltage glitch on the nPORRST pin

Implication(s) The CPU will read bad data from flash bank 7 if the read happens during the glitch. This
will most likely cause an ECC error, but an ECC error is not guaranteed.

Workaround(s) Good layout practices keeping the nPORRST trace protected from induced noise will
prevent occurrence of this problem.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com DEVICE#B066 — HCLK Stops Prematurely when Executing from Flash

21SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

DEVICE#B066 HCLK Stops Prematurely when Executing from Flash

Severity 3-Medium

Expected Behavior To reduce power consumption, the CPU may request that the memory clock, HCLK, is
disabled by setting bit 1 of the Clock Domain Disable Register (CDDIS.1). After the CPU
makes this request, the flash bank is expected to monitor CPU activity and delay the
actual disable of HCLK until the flash bank's Active Grace Period (BAGP) has expired
(meaning that the CPU has stopped requesting instructions and data from the flash bank
for some number of clock cycles).

Issue The flash bank fails to delay the disable of HCLK. Therefore the CPU may freeze before
it executes the WFI instruction.

Condition The code requests to disable HCLK by setting bit 1 of the Clock Domain Disable register
(CDDIS.1).

Implication(s) If HCLK is disabled, and the CPU stops before executing the "WFI" instruction, the CPU
will not resume execution on a wakeup interrupt.

Workaround(s) A WFI instruction should immediately follow the instruction that sets bit 1 of the Clock
Domain Disable Register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

FMC#79 — Abort on Unaligned Access at End of Bank www.ti.com

22 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

FMC#79 Abort on Unaligned Access at End of Bank

Severity 4-Low

Expected Behavior Since packed code and data can be linked to unaligned boundaries, the CPU should be
able to read these locations in memory space independent of the flash bank boundaries.

Issue The CPU will sometimes get an abort when making an unaligned access near the
physical end of the bank boundary (in the range from 0xnnnnFFF1 through
0xnnnnFFFF). Examples of unaligned accesses capable of causing an abort:

Condition This only occurs within the ATCM space. It only occurs when the flash is in single cycle
mode and operating above 20MHz speed.

- a 32 bit data read such as a LDR at an address not on a 4 byte boundary

- a 16 bit data read such as a LDRH at an address not on a 2 byte boundary

- fetching a 32-bit thumb2 instruction which is not aligned on a four byte boundary

Implication(s) An abort exception may be generated when accessing unaligned data or instructions in
this range

Workaround(s) Use an option to keep the compiler from generating unaligned data or instructions. For
the TI compiler use --unaligned_access=off. Also ensure that hand generated assembly
language routines do not create an unaligned access to these locations.

OR

Do not use single cycle mode (RWAIT=0) at frequencies above 20MHz.

OR

Reserve the last fifteen bytes of flash in each bank on the ATCM with either a dummy
structure that is not accessed, or with a structure that will not create an unaligned
access.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com GCM#59 — Oscillator can be disabled while PLL is running

23SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

GCM#59 Oscillator can be disabled while PLL is running

Severity 4-Low

Expected Behavior No clock source can be disabled if it is being used

Issue The oscillator can be disabled if the PLL is the only thing using it as a clock source

Condition The oscillator may be disabled if:

1. no clock domain relies upon the oscillator

2. no clock domain relies upon any PLL

Implication(s) This issue allows the oscillator to be disabled while used by the PLL. When the oscillator
disables, the PLL will slip. The system behaves exactly like it would in case of a PLL
slip. The response includes:

1. setting the RF SLIP flag (GBLSTAT.8)

2. switching Clock Source 1 from the PLL (if enabled). This autonomous switch prevents
use of the PLL until the fault is cleared.

3. the device generates an ESM error (if enabled)

4. Cause a reset if the Reset-On-Slip Failure bit is set in PLLCTRL1.

If the software now uses the PLL as a clock source, there will be a long delay (mS) for
the oscillator and the PLL to restart and provide a clock. Additionally, the SLIP flag(s)
must be cleared in order for the PLL to propagate to the clock domains.

Normally this is not an issue as the software should not attempt to disable the oscillator
when it is being used by the PLL. Also, once the PLL is stable and used as a clock
source, the oscillator can no longer be disabled.

Workaround(s) Since the PLL is a secondary clock source dependent on the Oscillator input, the user
software should not disable the Oscillator while the PLL is enabled while neither of them
are sources for any of the clock domains.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

MCRC#18 — CPU Abort Generated on Write to Implemented CRC Space After Write to Unimplemented CRC Space
www.ti.com

24 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

MCRC#18 CPU Abort Generated on Write to Implemented CRC Space After Write to
Unimplemented CRC Space

Severity 4-Low

Expected Behavior A write to the legal address region (0xFE00_0000 to 0xFE00_01FF) of the CRC module
should not generate an abort

Issue An abort is generated on a write to a legal address region (0xFE000000-0xFE0001FF) of
the CRC register space.

Condition When a normal mode write to an unimplemented address region (0xFE00_0200 to
0xFE00_FFFF) of the CRC register space is followed by a write to a legal address
region (0xFE00_0000 to 0xFE00_01FF) of the CRC register space.

Implication(s) A write to an unimplemented address region of the CRC register space generates a data
abort as expected. The next write to a legal address region of the CRC register space
generates an unexpected second data abort.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com MIBSPI#110 — Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data Incorrectly for
Slow SPICLK Frequencies and for Clock Phase = 1

25SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

MIBSPI#110 Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data
Incorrectly for Slow SPICLK Frequencies and for Clock Phase = 1

Severity 3-Medium

Expected Behavior The SPI must be able to transmit and receive data correctly in slave mode as long as
the SPICLK is slower than the maximum frequency specified in the device datasheet.

Issue The MibSPI module, when configured in multi-buffered slave mode with 3 functional pins
(CLK, SIMO, SOMI) or 4 functional pins (CLK, SIMO, SOMI, nENA), could transmit
incorrect data.

Condition This issue can occur under the following condition:
• Module is configured to be in multi-buffered mode, AND
• Module is configured to be a slave in the SPI communication, AND
• SPI communication is configured to be in 3-pin mode or 4-pin mode with nENA, AND
• Clock phase for SPICLK is 1, AND
• SPICLK frequency is VCLK frequency / 12 or slower

Implication(s) Under the above described condition, the slave MibSPI module can transmit incorrect
data.

Workaround(s) The issue can be avoided by setting the CSHOLD bit in the control field of the TX RAM.
The nCS is not used as a functional signal in this communication, hence setting the
CSHOLD bit does not cause any other effect on the SPI communication.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

MIBSPI#111 — Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is Enabled www.ti.com

26 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

MIBSPI#111 Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is
Enabled

Severity 3-Medium

Expected Behavior After a data length (DLEN) error is generated and the interrupt is serviced the SPI
should abort the ongoing transfer and stop.

Issue When a DLEN error is created in Slave mode of the SPI using nSCS pins in IO
Loopback Test mode, the SPI module re-transmits the data with the DLEN error instead
of aborting the ongoing transfer and stopping.

Condition This is only an issue for an IOLPBK mode Slave in Analog Loopback configuration,
when the intentional error generation feature is triggered using
CTRL_DLENERR(IOLPBKTSTCR.16).

Implication(s) The SPI will repeatedly transmit the data with the DLEN error when configured in the
above configuration.

Workaround(s) After the DLEN_ERR interrupt is detected in IOLPBK mode, disable the transfers by
clearing the SPIEN bit of SPIGCR1 register (bit 24) and then re-enable the transfers by
setting SPIEN.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com MIBSPI#139 — Mibspi RX RAM RXEMPTY bit does not get cleared after reading

27SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

MIBSPI#139 Mibspi RX RAM RXEMPTY bit does not get cleared after reading

Severity 3-Medium

Expected Behavior The MibSPI RXEMPTY flag is auto-cleared after a CPU or DMA read.

Issue Under a certain condition, the RXEMPTY flag is not auto-cleared after a CPU or DMA
read.

Condition The TXFULL flag of the latest buffer that the sequencer read out of transmit RAM for the
currently active transfer group is 0, AND

A higher priority transfer group interrupts the current transfer group and the sequencer
starts to read the first buffer of the new transfer group from the transmit RAM, AND

Simultaneously, the host (CPU/DMA) is reading out a receive RAM location that contains
valid received data from the previous transfers.

Implication(s) The fake RXEMPTY '1' suspends the next Mibspi transfer with BUFMODE 6 or 7.

With other BUFMODEs, a false "Receive data buffer overrun" will be reported for the
next Mibspi transfer.

Workaround(s) 1. If at all possible, avoid transfer groups interrupting one another.

2. If dummy buffers are used in lower priority transfer group, select appropriate
"BUFMODE" for them (like SKIP/DISABLED) unless there is a specific need to use the
"SUSPEND" mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

NHET#54 — PCNT incorrect when low phase is less than one loop resolution www.ti.com

28 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

NHET#54 PCNT incorrect when low phase is less than one loop resolution

Severity 3-Medium

Expected Behavior PCNT instruction can correctly capture a low going pulse width if the pulse width is
greater than two high resolution clocks

Issue PCNT instruction may capture incorrect low resolution clock (control field) and high
resolution clock value

Condition When measuring from falling edge to rising edge and the low pulse width is less than
one low resolution clock width.

Implication(s) PCNT cannot be used for capturing the pulse width of a low pulse less than one low
resolution clock wide.

Workaround(s) Connect the input pulse to be measured on two nHET channels using the high resolution
share feature. Then use two WCAP instructions, one to measure the falling edge, the
second to measure the rising edge. Use the CPU to calculate the time difference. In this
workaround the period of the input signal must be two loop resolutions or longer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com NHET#55 — More than one PCNT instruction on the same pin results in measurement error

29SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

NHET#55 More than one PCNT instruction on the same pin results in measurement error

Severity 3 - Medium

Expected Behavior It should be possible to use more than one Period/Pulse Count (PCNT) instruction to
measure a single pin, as long as only one of the PCNT instructions is configured for high
resolution (hr_lr=HIGH). For example, consider the following code fragments.

Code Fragment 1 - Should Be OK, But Fails Due to This Issue
PC1 PCNT { hr_lr=HIGH, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=LOW, type=FALL2FALL, pin=2};

Code Fragment 2 - Should Be OK, But Fails Due to This Issue
PC1 PCNT { hr_lr=LOW, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=HIGH, type=FALL2FALL, pin=2};

Code fragments 1 and 2 should work properly because only one of the two PCNT
instructions are configured for hr_lr=HIGH, and there is one hi-res structure available.

Issue There are two issues.
1. A measurement error is introduced into the result of the PCNT instruction with

hr_lr=HIGH. Normally this instruction would return a result to within ±½ high
resolution clock periods of the actual result, due to quantization noise. However
another PCNT instruction on the same pin causes an error of up to ±1 loop resolution
period. Note that this error is greater than the normal loop resolution period error of
±½ loop resolution period; because the high-resolution bits also contribute to the
error in this case.

2. A measurement error is introduced into the result of the PCNT instruction with
hr_lr=LOW. The PCNT instruction with hr_lr=LOW should return a value with 0's in bit
positions 6:0 (the high-resolution portion of the measurement result). This is the case
when both PCNT instructions are set for hr_lr=LOW (Code Fragment 3) but for Code
Fragments 1 and 2 the loop resolution PCNT returns a non-zero in bit positions 6:0.

Conditions This problem occurs when both conditions are true:

1. More than one PCNT selecting the same pin number is executed during the same
loop resolution period.

2. One of the PCNT instructions is configured for high resolution (hr_lr=HIGH).

Please also note that the N2HET assembler defaults to high resolution for PCNT if the
hr_lr field is not specified as part of the instruction. Therefore unless the instruction is
coded explicitly with 'hr_lr=LOW as an option, the assembler will create N2HET machine
code with hr_lr=HIGH.'

Implications The impact is greatest when workaround option 1 cannot be applied due to the number
of timer pins required by the application. If Option 1 cannot be applied, then the PCNT
measurements on this pin are reduced to ±½ loop resolution period.

Workaround(s) Option 1 - Use the HR Share feature and make both measurements with hr_lr=HIGH.
First, set the appropriate HRSHARE bit in the HETHRSH register. In the following
example this means setting HETHRSH bit 1 - "HRSHARE3/2". This bit causes the input
of device pin 2 to drive the N2HET pin inputs 2 and 3. Then modify the N2HET code
sequence to use pin 3 for one of the PCNT instructions:

Code Fragment 1 Modified for HR Share
PC1 PCNT { hr_lr=HIGH, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=HIGH, type=FALL2FALL, pin=3};

This option exceeds the original measurement resolution objective because both PCNT
measurements are made with high-resolution. The disadvantage of this workaround is
that it requires the high-resolution structure of pin 3, leaving pin 3 only useable as a
GPIO pin rather than as a timer pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

NHET#55 — More than one PCNT instruction on the same pin results in measurement error www.ti.com

30 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

Option 2 - Use only loop resolution mode PCNT instructions (as in Code Fragment 3).
This will work properly while leaving pin 3 available for timing functions, but the
resolution on both the period and duty cycle measurements are reduced to loop
resolution.

Code Fragment 3 - OK
PC1 PCNT { hr_lr=LOW, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=LOW, type=FALL2FALL, pin=2};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com PBIST#4 — PBIST ROM Algorithm Doesn't Execute

31SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

PBIST#4 PBIST ROM Algorithm Doesn't Execute

Severity 3-Medium

Expected Behavior PBIST controller checks memories with the specified algorithm as documented in the
TRM

Issue The possibility that the PBIST algorithms will not execute only occurs when PBIST is
initially run after power on reset. Once the PBIST controller starts working, it will continue
to work until the next power cycle.

Condition The possibility that the PBIST algorithms will not download only occurs when PBIST is
initially executed after power on reset. Once the PBIST ROM starts working, it will
continue to work until the next power cycle.

Implication(s) The PBIST test may return with a pass status, even though the algorithm was not
properly executed

Workaround(s) This condition does not occur often, but when it does occur the execution time is very
short. Successive attempts eventually succeed. One workaround is to measure the
execution time of the PBIST algorithm. Using a software loop with interrupts disabled is
sufficient. If the execution time is much shorter than the normal execution time and the
status indicates PBIST passed, ignore the results and rerun the PBIST test. Normal
execution time is dependent on clock speeds and which memory and algorithms are
selected. The normal execution time can be derived from PBIST times given in the
datasheet, or as measured in initial code development.

TI recommends to use 120% of the normal time as a time out value and less than 80%
of the normal execution time as an indication that the PBIST controller did not execute
properly.

A more sophisticated workaround is to use the errata_PBIST_4() function provided in
HALCoGen version 3.08.00 or later.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

SSWF021#44 — Change to PLL Lock Time www.ti.com

32 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

SSWF021#44 Change to PLL Lock Time

Severity 4-Low

Expected Behavior The time for the PLL to lock would be the same for all revisions of a part.

Issue The PLL lock time has been increased on newer revision parts by 384 OSCIN cycles.

Condition None

Implication(s) The PLL takes longer to lock. If the software has a timeout loop waiting for the PLL to
lock, software developed on this revision of silicon may timeout on future revisions of
silicon.

Workaround(s) If there is a timeout loop in the software waiting for the PLL to lock, the timeout value
should be large enough to allow for the greater lock time required in newer versions of
the silicon. The lock time increases:

from 128 + 1024*NR OSCIN cycles

to 512 + 1024*NR OSCIN cycles

For typical PLL settings, the input divider is larger than 1 so that the percentage increase
in lock time is small.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com SSWF021#45 — PLL Fails to Start

33SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

SSWF021#45 PLL Fails to Start

Severity 2-High

Expected Behavior When the PLL control registers are properly initialized and the appropriate clock source
disable bit is cleared, after the prescribed number of OSCIN cycles, the PLL should be
locked and the appropriate CSVSTAT bit should be set.

Issue On rare occasions the PLL does not start properly. The fail has one of three signatures:
1. CSVSTAT is set, but the ESM flag for PLL slip is set.
2. CSVSTAT is not set and the ESM flag for PLL slip is set.
3. CSVSTAT is set, the ESM flag for PLL slip is not set, but the PLL as measured by

the DCC is not running.

Condition This issue applies to both PLLs (if the device has more than one PLL). This condition
occurs only from a power-on. Once the PLL has locked, the PLL stays locked. Once
properly locked, the PLL can be disabled and re-enabled with no issues.

Implication(s) If the PLL is used as the main clock source when it has not properly started, the CPU
may stop executing instructions.

Workaround(s) While the main clock is being driven by the oscillator, the software loop checking that the
PLL has locked (CSVSTAT = 1) should also check if the ESM flag for PLL slip has been
set. When the CSVSTAT bit is set, the PLL frequency should be measured with the DCC
before using the PLL as a clock source. If either the ESM flag for PLL slip is set, or the
PLL has an incorrect frequency, the PLL should be disabled and the lock procedure
should be repeated; TI recommends allowing a minimum of five attempts.

A more detailed explanation of the workaround with associated source code can be
found in the application note:
Hercules PLL Advisory SSWF021#45 Workaround

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F
http://www.ti.com/lit/pdf/spna233

STC#26 — The value programmed into the Self Test Controller (STC) Self-Test Run Timeout Counter Preload Register
(STCTPR) is restored to its reset value at the end of each self test run. www.ti.com

34 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

STC#26 The value programmed into the Self Test Controller (STC) Self-Test Run Timeout
Counter Preload Register (STCTPR) is restored to its reset value at the end of
each self test run.

Severity 4-Low

Expected Behavior Once the Self-Test Run Timeout Counter Preload Register (STCTPR) is written, the
value written into the register will be maintained until it is overwritten or a system or
power on reset occurs and it will be used to preload the timeout counter for each self
test run.

Issue The STCTPR is reset to the reset default value (0xFFFFFFFF) at the end of each CPU
self test run and the value previously written to the STCTPR register is lost.

Condition Execution of any CPU self test with a STCTPR value other than the default value
(0xFFFFFFFF).

Implication(s) Subsequent self test runs will use a maximum timeout value of 0xFFFFFFFF if not re-
written to the desired value.

Workaround(s) The Timeout preload value in STCTPR register needs to be programmed to the required
time out value before starting each self test if a timeout count other than 0xFFFFFFFF is
desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com STC#29 — Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a system reset
[internal or external] occurs while a CPU Self-Test is executing.

35SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

STC#29 Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a
system reset [internal or external] occurs while a CPU Self-Test is executing.

Severity 4-Low

Expected Behavior If an internal or external system reset is asserted the CPU should be reset cleanly with
no inadvertent interrupt requests.

Issue An unexpected PMU interrupt request may be generated.

Condition This condition can occur when am internal or external system reset is asserted and the
CPU is executing a CPU self test.

Implication(s) The interrupt request signal from the performance monitoring unit (PMUIRQ) may
inadvertently be set. This signal will generate an interrupt to the Vector Interrupt Module
(VIM) and later become an interrupt to the CPU. Therefore, it is possible to see an
unexpected interrupt after the CPU comes out of the system reset.

Workaround(s) Clear VIM interrupt request 22 by writing 0x00400000 to location 0xFFFFFE20 before
enabling this interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

STC#31 — Self Test Controller Returns a False Failure www.ti.com

36 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

STC#31 Self Test Controller Returns a False Failure

Severity 3-Medium

Expected Behavior The STC tests the logic of the CPUs then generates a CPU reset on completion.

Issue The STC may indicate that the self test (LBIST) failed when the CPU logic is working
properly. The root cause is that the ROM in the STC is not read properly. This is the
same root cause as in erratum PBIST#4.

Condition This only occurs after initial power on. This fail condition is believed to be very rare, but it
can be reproduce in simulations and has been seen in similar circuits. The fail mode is
dependent on temperature, core voltage slew rate and currents into the device from
input pins before the device powers up. The impact of these factors is different on each
device.

Implication(s) The CPU self test appears to fail.

Workaround(s) Use the function "errata_PBIST_4()" provided in HALCoGen 3.08.00 or later before
running PBIST or LBIST. Then run the PBIST ROM tests on all ROMs before using the
STC controller to execute LBIST.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com SYS#046 — Clock Source Switching Not Qualified With Clock Source Enable And Clock Source Valid

37SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

SYS#046 Clock Source Switching Not Qualified With Clock Source Enable And Clock
Source Valid

Severity 4-Low

Expected Behavior An attempt to switch to a clock source which is not valid yet should be discarded.

Issue Switching a clock source by simply writing to the GHVSRC bits of the GHVSRC register
may cause unexpected behavior. The clock will switch to a source even if the clock
source was not ready.

Condition A clock domain that is programmed to take the clock source which is not yet valid as
indicated by the CSVSTAT register.

Implication(s) Unexpected behavior stated above.

Workaround(s) Always check the CSDIS register to make sure the clock source is turned on and check
the CSVSTAT register to make sure the clock source is valid. Then write to GHVSRC to
switch the clock.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

SYS#102 — Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear www.ti.com

38 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

SYS#102 Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear

Severity 3-Medium

Expected Behavior The Technical Reference Manual states that EFUSE_Abort[4:0] of the SYSTASR
register should be write-clear in privilege mode.

Issue However, these bits are implemented as read-clear.

Condition Always.

Implication(s) Software implementation for error handling needs to take care of this as the subsequent
reads of the register can return value of zero.

Workaround(s) Avoid multiple read accesses of the SYSTASR register.

None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

www.ti.com VIM#27 — Unexpected phantom interrupt

39SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

VIM#27 Unexpected phantom interrupt

Severity 2-High

Expected Behavior When responding to an interrupt and a subsequent interrupt is received, the
corresponding VIM request should be flagged as pending in the VIM status registers.
When the CPU is ready to service the subsequent interrupt, the correct service routine
address should be fetched by the CPU.

Issue On rare occasions the VIM may return the phantom interrupt vector instead of the real
interrupt vector.

Condition This condition is specific to software and hardware vectored modes. This is not
applicable for legacy interrupt servicing mode. This condition occurs when the ratio of
GCLK to VCLK is 3:1 or greater for hardware vectored mode, or the ratio of GCLK to
VCLK is 5:1 or greater for software vectored mode. A subsequent interrupt request must
occur when the VIM is finishing acknowledging a previous interrupt.

Implication(s) The subsequent interrupt request vectors to the phantom interrupt routine instead of the
correct service routine.

Workaround(s) The issue can be completely avoided if the GCLK:VCLK ratio is configured as 1:1 or 2:1.

For other VCLK ratios, the phantom interrupt handler simply needs to exit as normal,
without taking any special steps. If this issue is present, the VIM will interrupt the CPU
again, providing the correct vector.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

Revision History www.ti.com

40 SPNZ197F–March 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS0x32 Microcontroller

4 Revision History
This silicon errata revision history highlights the technical changes made from the previous revision of this
document to the current revision.

Table 2. Document Revision History

Advisory Changes in Advisory List Advisory ID
Added advisory(s) SSWF021#45

Removed advisory(s) None
Modified advisory(s) None

Other None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ197F

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	TMS570LS0x32 Microcontroller
	Table of Contents
	1 Device Nomenclature
	2 Revision Identification
	3  Known Design Exceptions to Functional Specifications
	4 Revision History

	Important Notice

