

VT-700 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC1

Vectron's VT-700 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave output or CMOS output, analog temperature compensated oscillator, operating off either a 2.8, 3.0, 3.3 or 5.0 volt supply, hermetically sealed 5x7 ceramic package.

Features

- Clipped Sine Wave or CMOS Output
- Output Frequencies to 40 MHz
- Fundamental Crystal Design
- Optional VCXO Function available
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive (1) and fully compatible with lead free assembly

Applications

- Wireless Communications
- Base Stations
- Point to point radios
- Broadband Access
- Test Equipment
- Handsets

Block Diagram

Specifications

Table 1. Electrical Performance, Clippe	d Sine Wave O	otion			
Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency, +5V option +2.8, +3.0, +3.3V options	f _o	10 8		27 40	MHz
Supply Voltage ¹	V _{DD}	+2.8	8, +3.0, +3.3 or -	+5.0	V
Supply Current, 8 to 14.999MHz 15.000 to 25.9999MHz 26.000 to 39.9999MHz 40.000MHz	I _{DD}			1.5 2.0 2.5 3.0	mA
Operating Temperature	Τ _{ορ}	0/55, -10/	60, -20/70, -30/	80, -40/85	°C
Stability Over Operating Temperature		±0.5, ±1.0, ±.	5, ±2.0, ±2.5, ±3	.0, ±4.0, ±5.0	ppm
Initial Accuracy, "No Adjust" Option ²				±1.0	ppm
Power Supply Stability				±0.2	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/yr
Pull Range	TPR	±5, ±8, ±10, ±12		ppm	
Control Voltage to reach Pull Range		0.5		2.5	V
Control Voltage Impedance		1			Mohm
Output Level ³	V _o p/p	0.8			V
Output Load				10K II 10pF	
Phase Noise, 10.000MHz 10Hz 100Hz 1kHz 10kHz 100kHz			-94 -118 -135 -147 -152		dBc/Hz
Start Up Time				2	ms

1. The VT-700 power supply pin should be filtered, eg, a 0.1 and 0.01 uf capacitor.

2. Initial Accuracy is ± 2.0 ppm after 2 IR Reflows.

3. The Output is AC coupled.

Clipped Sine Wave Output

Phase Noise for a Clipped Sinewave Output

Specifications

Table 2. Electrical Performance, CMO	S Option				
Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency	f _o	10		40	MHz
Supply Voltage ¹	V _{DD}	3.135	3.3	3.465	V
Supply Current	I _{DD}			10	mA
Operating Temperature	T _{OP}	0/55, -10,	/60, -20/70, -30/	80, -40/85	°C
Stability Over Operating Temperature		±0.5, ±1.0, ±.	5, ±2.0, ±2.5, ±3	.0, ±4.0, ±5.0	ppm
Initial Accuracy, "No Adjust" Option ²				±1.0	ppm
Power Supply Stability				±0.3	ppm
Load Stability				±0.2	ppm
Aging				±1.0	ppm/yr
Pull Range	TPR ±5, ±8, ±10, ±12				ppm
Control Voltage to reach Pull Range		0.5		2.5	V
Control Voltage Impedance		1			Mohm
Output Level ³ Output Logic High Output Logic Low Output Logic High Drive Output Logic Low Drive	V _{OH} V _{OL} I _{OH}	0.9*VDD 4		0.1*VDD -4	V V mA mA
Rise and Fall Time ⁴	t _R /t _F			3	ns
Output Load				15	pF
Phase Noise, 10.000MHz 10Hz 100Hz 1kHz 10kHz 100kHz			-95 -121 -143 -154 -155		dBc/Hz
Start Up Time				2	ms

1. The VT-700 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.

2. Initial Accuracy is ±2.0ppm after 2 IR Reflows.

3. The Output is DC coupled.

4. Rise and Fall time are measured at 20/80% levels.

Phase Noise

Allan Deviation

Outline Drawing

Recommended Pad Layout

4.2

1.8

Function

TCXO Control Voltage or Ground

Electrical and Lid Ground

Output Frequency

Supply Voltage

VCXO Function

VCXO Feature: The VT-700 can be ordered with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 1Mohm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating on the VCXO optional device.**

"No Adjust" Option: In applications were the VT-700 will not be used in a PLL, or the output frequency does not need fine tune adjustments, the best device to use would be a VT-700-xxx-xxx0 By using the "no adjust" option, the circuit is simplified as Vc does not need to be adjusted or set to a predetermined voltage and pin 1 should be grounded (pin 1 can be left open but should not be set to a voltage such as an RF signal or power supply voltage.

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Although ESD protection circuitry has been designed into the VT-700, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 4. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	T _{STORE}	-55/125	∘⊂
Supply Voltage	V _{DD}	6	V
Control Voltage	V _c	0/V _{DD}	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

Table 5. Environmental Compliance					
Parameter	Condition				
Mechanical Shock	MIL-STD-883 Method 2002				
Mechanical Vibration	MIL-STD-883 Method 2007				
Temperature Cycle	MIL-STD-883 Method 1010				
Solderability	MIL-STD-883 Method 2003				
Fine and Gross Leak	MIL-STD-883 Method 1014				
Resistance to Solvents	MIL-STD-883 Method 2015				
Moisture Sensitivity Level	MSL1				
Contact Pads	Gold over Nickel				

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

Table 6. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	R _{UP}	3°C/sec Max
Time above 217C	t	150 sec Max
Time to Peak Temperature	t _{AMB-P}	480 sec Max
Time at 260C	t _P	10 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	R _{dn}	6°C/sec Max

Solderprofile:

Tape & Reel

Table 7.	Table 7. Tape and Reel Information											
	Tape Dimensions (mm)				Reel Dimensions (mm)							
w	F	Do	Ро	P1	А	В	С	D	Ν	W1	W2	#/Reel
16	7.5	1.5	4	8	180	1.5	13	20.2	60	16.4	20.4	1000

Table 8. Sta	ndard Frequ	iencies (MHz	z)						
8.1920	10.000	10.0001350	10.0013550	10.080	10.240	10.2450	11.05920	11.28960	12.000
12.2450	12.2880	12.3520	12.500	12.504	12.580	12.5829120	12.600	12.6883750	12.800
13.000	13.560	14.000	14.3180	14.400	14.500	14.58880	14.6171880	14.74560	14.850
15.000	15.3598650	15.360	16.000	16.034950	16.320	16.3252910	16.36760	16.3676670	16.36770
16.3840	16.3680	16.580	16.58880	16.777216	16.800	17.500	18.000	18.4140	18.4320
18.6010	19.000	19.200	19.440	19.680	19.6608	19.800	20.000	20.250	20.480
20.750	20.916460	21.250	21.94921875	22.000	22.3680	23.090	24.000	24.1920	24.53350
24.5760	24.80640	25.000	25.488280	26.000	27.000	28.000	30.720	32.000	33.000
35.3280	36.000	38.400	38.880	39.000	40.000				

Example: VT-700-EFG-206A-26M0000000

* Add **_SNPBDIP** for tin lead solder dip Example: VT-700-EFG-206A-26M0000000_SNPBDIP

Revision History						
Revision Date	Approved	Description				
August 10, 2018	FB	Rev 0.4: Updated logo and contact information, added "SNPBDIP" ordering option				

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever anising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided 'as is, where is' and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi or provided in this document is provided as is, where is' and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi provided in this document is provided in this document is provided in this document is provided in the information provided in this document is provided in the document is provided in this document is provided in this document is provided in this document is provided in the information is entirely with the Buyer. Microsemi and Microsemi and Microsemi and Microsemi as any difference and the set and verify the same. The information provide in the information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any patter use and the set and the set

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.