STL7N6F7

N-channel 60 V, 21 mΩ typ., 7 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 2x2 package

Datasheet - production data

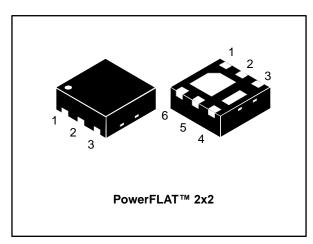
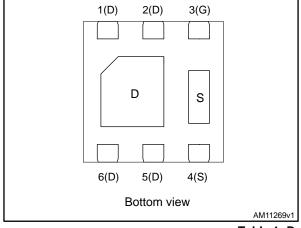



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STL7N6F7	60 V	25 mΩ	7 A

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL7N6F7	ST7N	PowerFLAT™ 2x2	Tape and reel

Contents STL7N6F7

Contents

1	Electric	al ratings	3
2		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT 2x2 package information	10
5	Revisio	n history	12

STL7N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	60	V	
V_{GS}	Gate-source voltage	± 20	V	
I _D	Drain current (continuous) at T _{pcb} = 25 °C	7	Α	
I _D	Drain current (continuous) at T _{pcb} = 100 °C	4.5	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	28	Α	
Ртот	Total dissipation at T _{pcb} = 25 °C	2.4	W	
TJ	Operating junction temperature range		°C	
T _{stg}	Storage temperature range -55 to 150			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	52	°C/W

Notes:

 $^{(1)}\!When$ mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s.

⁽¹⁾Pulse width limited by safe operating area.

Electrical characteristics STL7N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

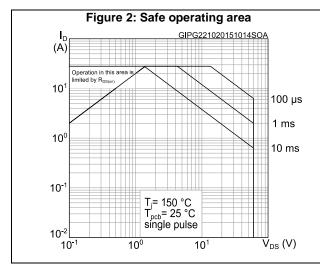
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1$ mA, $V_{GS} = 0$ V	60			٧
IDSS	Zero gate voltage $V_{GS} = 0 \text{ V}$, $V_{DS} = 60 \text{ V}$				1	μΑ
Igss	Gate-body leakage current	V _G S = 20 V, V _D S = 0 V			100	nA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3.5A		21	25	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	420	1	pF
Coss	Output capacitance	$V_{DS} = 30 \text{ V, } f = 1 \text{ MHz,}$	-	215	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	16	1	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_{D} = 7 \text{ A}$	-	8	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 14: "Test circuit	-	2.3	-	nC
Q_{gd}	Gate-drain charge	for gate charge behavior")	-	2.1	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 3.5\text{A},$	-	7.85	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	ı	3.25	ı	ns
t _{d(off)}	Turn-off delay time	for resistive load switching	ı	12.1	ı	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	ı	3.95	ı	ns


Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	-		1.2	V
t _{rr}	Reverse recovery time	$I_D = 7 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	-	17.1		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit	ı	6.67		nC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times"	-	0.8		А

Notes:

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

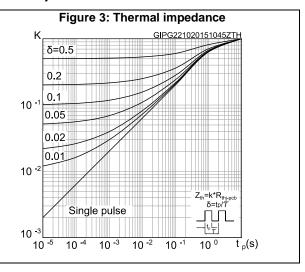
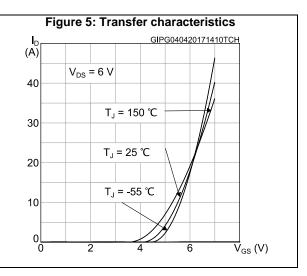


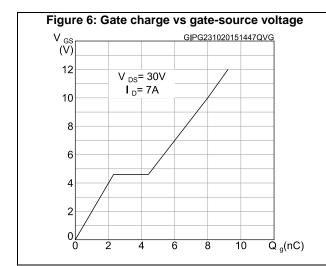
Figure 4: Output characteristics

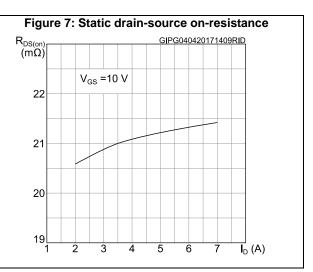
GIPG0304201712500CH

(A)

(B)


V_{GS}= 8, 9, 10 V


V_{GS}= 7 V


V_{GS}= 6 V

V_{GS}= 5 V

V_{GS}= 7 V

STL7N6F7 Electrical characteristics

Figure 8: Capacitance variations

C GIPG221020151150CVR (pF)

10² Coss

Coss

CRSS

Coss

CRSS

Coss

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPD271020151425VTH 1.15 $I_D = 250 \, \mu A$ 1.1 1.05 0.95 0.9 0.85 0.8 0.75 25 75 -25 125 T_i (°C)

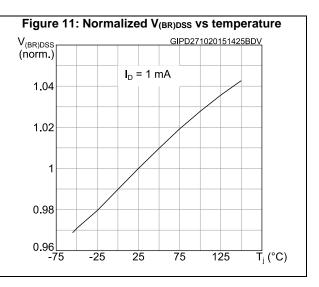
Figure 10: Normalized on-resistance vs temperature

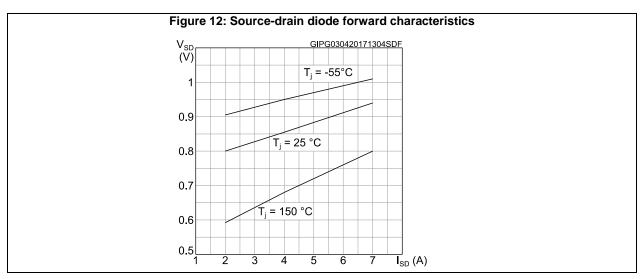
R DS(on) (norm.)

1.8

V GS= 10 V

I D= 3.5 A


1.4


1

0.6

0.2

-75 -25 25 75 125 T (°C)

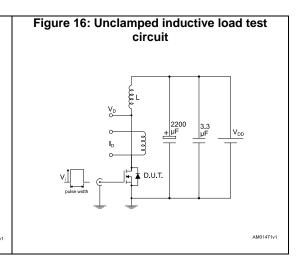
Test circuits STL7N6F7

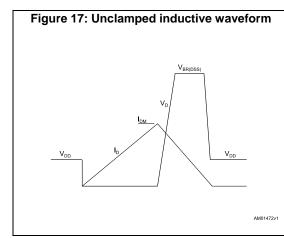
3 Test circuits

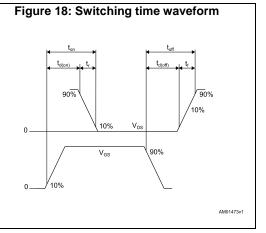
Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VG


14 KΩ VG


14 KΩ VG

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

577

STL7N6F7 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT 2x2 package information

Figure 19: PowerFLAT™ 2x2 package outline

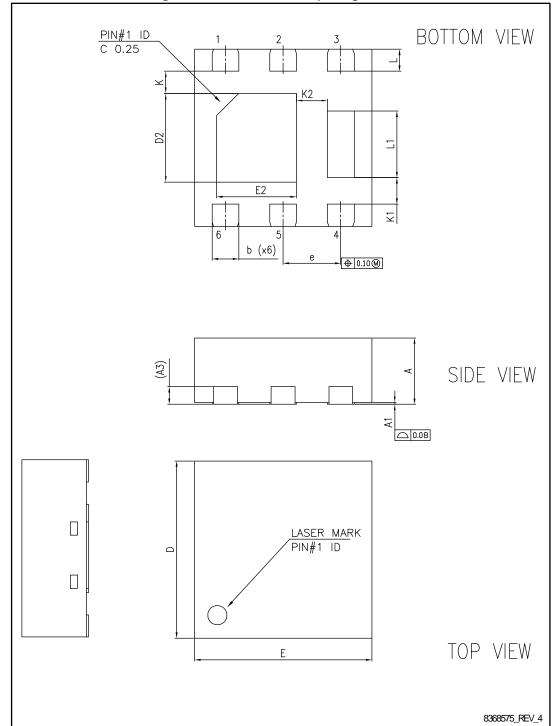
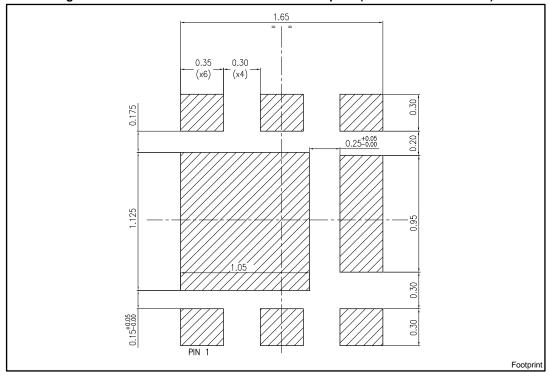



Table 8: PowerFLAT™ 2x2 mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
А	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3		0.20			
b	0.25	0.30	0.35		
D	1.90	2.00	2.10		
Е	1.90	2.00	2.10		
D2	0.90	1.00	1.10		
E2	0.80	0.90	1.00		
е	0.55	0.65	0.75		
K	0.15	0.25	0.35		
K1	0.20	0.30	0.40		
K2	0.25	0.35	0.45		
L	0.20	0.25	0.30		
L1	0.65	0.75	0.85		

Figure 20: PowerFLAT™ 2x2 recommended footprint (dimensions are in mm)

Revision history STL7N6F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
27-Aug-2015	1	First release.
22-Oct-2015	2	Updated title and features in cover page Updated Table 4: "On /off states", Table 5: "Dynamic" and Table 6: "Switching times". Added Section 4.1: "Electrical characteristics (curves)"
03-Apr-2017	3	Modified title and features table on cover page Modified Table 4: "On /off states" Modified Figure 4: "Output characteristics", Figure 5: "Transfer characteristics", Figure 7: "Static drain-source on-resistance" and Figure 12: "Source-drain diode forward characteristics" Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

