74ABT652A

Octal transceiver/register; non-inverting; 3-state

Rev. 02 — 12 March 2010

Product data sheet

1. General description

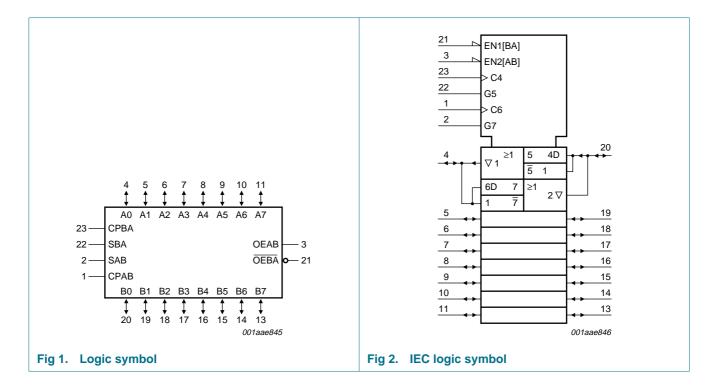
The 74ABT652A high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT652A transceiver/register consists of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin (CPAB or CPBA) goes HIGH. Output Enable (OEAB, OEBA) and Select (SAB, SBA) pins are provided for bus management.

2. Features and benefits

- Independent registers for A and B buses
- Multiplexed real-time and stored data
- 3-state outputs
- Live insertion/extraction permitted
- Power-up 3-state
- Power-up reset
- Output capability: +64 mA to –32 mA
- Latch-up protection exceeds 500 mA per JESD78B class II level A
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ◆ MM JESD22-A115-A exceeds 200 V

3. Ordering information


Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74ABT652AD	–40 °C to +85 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
74ABT652ADB	–40 °C to +85 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1
74ABT652APW	–40 °C to +85 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1

Octal transceiver/register; non-inverting; 3-state

4. Block diagram

Semiconductors

Octal transceiver/register; non-inverting; 3-state

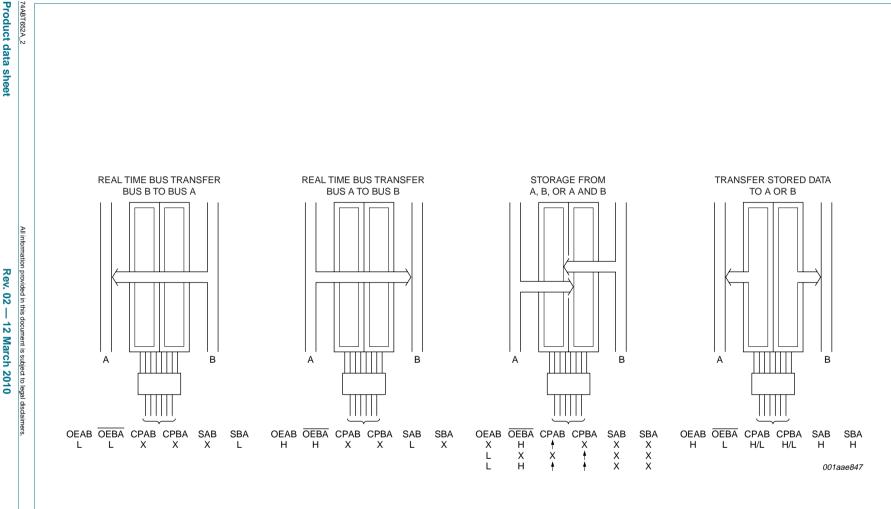
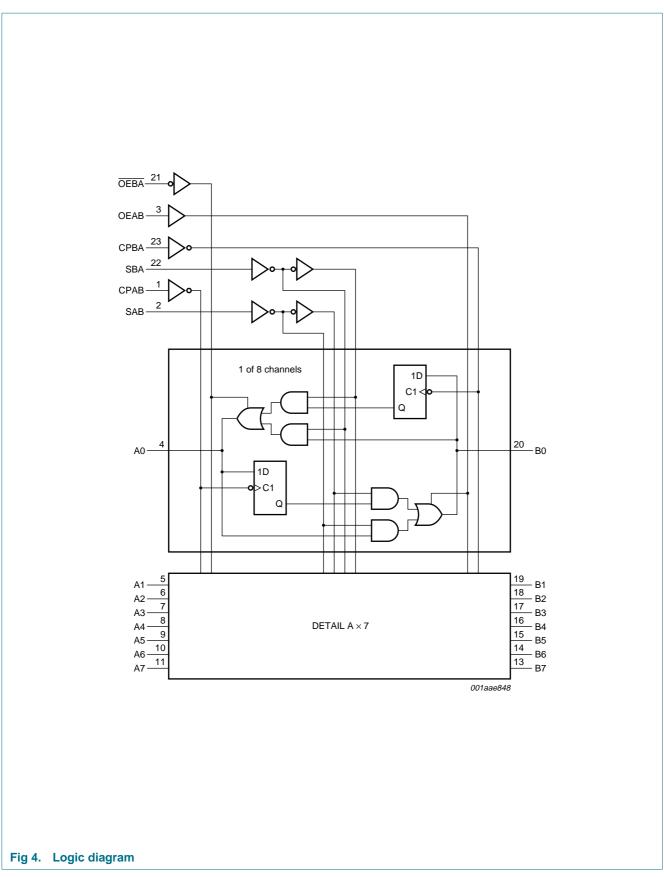
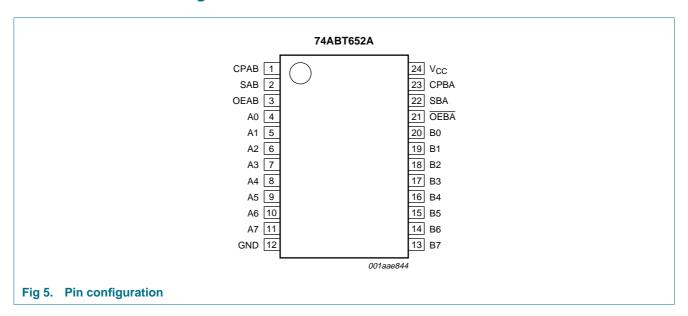



Fig 3. Real time bus transfer and storage


Octal transceiver/register; non-inverting; 3-state

Octal transceiver/register; non-inverting; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Symbol	FIII	Description
CPAB	1	A to B clock input
SAB	2	A to B select input
OEAB	3	A to B output enable input
A0, A1, A2, A3, A4, A5, A6, A7	4, 5, 6, 7, 8, 9, 10, 11	data input/output (A side)
GND	12	ground (0 V)
B0, B1, B2, B3, B4, B5, B6, B7	20, 19, 18, 17, 16, 15, 14, 13	data input/output (B side)
OEBA	21	B to A output enable input (active LOW)
SBA	22	B to A select input
СРВА	23	B to A clock input
V _{CC}	24	positive supply voltage

Octal transceiver/register; non-inverting; 3-state

6. Functional description

6.1 Function table

Table 3. Function table [1]

Inputs						Data I/O		Operating mode
OEAB	OEBA	СРАВ	СРВА	SAB	SBA	An	Bn	
L	Н	H or L	H or L	X	Х	input	input	isolation
L	Н	1	1	Χ	Χ	input	input	store A and B data
X	Н	↑	H or L	X	Χ	input	unspecified output [2]	store A, hold B
Н	Н	↑	↑	[3]	Х	input	unspecified output [2]	store A in both registers
L	X	H or L	↑	X	Χ	unspecified output [2]	input	hold A, store B
L	L	↑	1	X	<u>[3]</u>	unspecified output [2]	input	store B in both registers
L	L	Χ	Х	Χ	L	output	input	real time B data to A bus
L	L	Χ	H or L	Χ	Н	output	input	stored B data to A bus
Н	Н	Χ	Х	L	Х	input	output	real time A data to B bus
Н	Н	H or L	Χ	Н	X	input	output	store A data to B bus
Н	L	H or L	H or L	Н	Н	output	output	stored A data to B bus; stored B data to A bus

^[1] H = HIGH voltage level;

- [2] The data output function may be enabled or disabled by various signals at the OEBA and OEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock.
- [3] If both select controls (SAB and SBA) are LOW, then clocks can occur simultaneously. If either select control is HIGH, the clocks must be staggered in order to load both registers.

<u>Figure 3</u> demonstrates the four fundamental bus-management functions that can be performed with the 74ABT652A.

The select pins determine whether data is stored or transferred through the device in real time.

The output enable pins determine the direction of the data flow.

L = LOW voltage level;

X = don't care:

 $[\]uparrow$ = LOW-to-HIGH clock transition.

Octal transceiver/register; non-inverting; 3-state

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
V_{I}	input voltage		<u>[1]</u> –1.2	+7.0	V
V_{O}	output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+5.5	V
I _{IK}	input clamping current	V _I < 0 V	-18	-	mA
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
lo	output current	output in LOW-state	-	128	mA
Tj	junction temperature		[2] _	150	°C
T _{stg}	storage temperature		-65	+150	°C

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		4.5	-	5.5	V
V_{I}	input voltage		0	-	V_{CC}	V
V_{IH}	HIGH-level input voltage		2.0	-	-	V
V_{IL}	LOW-level input voltage		-	-	8.0	V
I _{OH}	HIGH-level output current		-32	-	-	mA
I _{OL}	LOW-level output current		-	-	64	mA
$\Delta t/\Delta V$	input transition rise and fall rate		0	-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C

^[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

Octal transceiver/register; non-inverting; 3-state

9. Static characteristics

Table 6. Static characteristics

Symbol	Parameter	Conditions			25 °C		–40 °C 1	Unit	
				Min	Тур	Max	Min	Max	
V_{IK}	input clamping voltage	$V_{CC} = 4.5 \text{ V}; I_{IK} = -18 \text{ mA}$		-1.2	-0.9	-	-1.2	-	V
V_{OH}	HIGH-level output	$V_I = V_{IL}$ or V_{IH}							
	voltage	$V_{CC} = 4.5 \text{ V}; I_{OH} = -3 \text{ mA}$		2.5	3.0	-	2.5	-	V
		$V_{CC} = 5.0 \text{ V}; I_{OH} = -3 \text{ mA}$		3.0	3.5	-	3.0	-	V
		$V_{CC} = 4.5 \text{ V}; I_{OH} = -32 \text{ mA}$		2.0	2.4	-	2.0	-	V
V_{OL}	LOW-level output voltage	V_{CC} = 4.5 V; I_{OL} = 64 mA; V_{I} = V_{IL} or V_{IH}		-	0.3	0.55	-	0.55	V
$V_{OL(pu)}$	power-up LOW-level output voltage	V_{CC} = 5.5 V; I_{O} = 1 mA; V_{I} = GND or V_{CC}	<u>[1]</u>	-	0.13	0.55	-	0.55	V
I _I	input leakage current	V_{CC} = 5.5 V; V_I = GND or 5.5 V							
		control pins		-	±0.01	±1.0	-	±1.0	μΑ
		data pins		-	±5	±100	-	±100	μΑ
l _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} \le 4.5 \text{ V}$		-	±5.0	±100	-	±100	μΑ
I _{O(pu/pd)}	power-up/power-down output current	V_{CC} = 2.1 V; V_{O} = 0.5 V; V_{I} = GND or V_{CC} ; OEAB, \overline{OEBA} don't care	[2]	-	±5.0	±50	-	±50	μΑ
l _{OZ}	OFF-state output current	V_{CC} = 5.5 V; V_I = V_{IL} or V_{IH}							
		V _O = 2.7 V		-	5.0	50	-	50	μΑ
		V _O = 0.5 V		-	-5.0	-50	-	-50	μΑ
I _{LO}	output leakage current	V_{CC} = 5.5 V; HIGH-state; V_O = 5.5 V; V_I = GND or V_{CC}		-	5.0	50	-	50	μΑ
Io	output current	$V_{CC} = 5.5 \text{ V}; V_{O} = 2.5 \text{ V}$	[3][5]	-180	-65	-40	-180	-40	mΑ
I _{CC}	supply current	V_{CC} = 5.5 V; V_I = GND or V_{CC}							
		outputs HIGH-state		-	110	250	-	250	μΑ
		outputs LOW-state		-	20	30	-	30	mΑ
		outputs disabled		-	110	250	-	250	μΑ
Δl _{CC}	additional supply current	per input pin; V_{CC} = 5.5 V; one input at 3.4 V; other inputs at V_{CC} or GND	[4]	-	0.3	1.5	-	1.5	mA
Cı	input capacitance	$V_I = 0 \text{ V or } V_{CC}$		-	4	-	-	-	pF
Co	output capacitance	outputs disabled; $V_O = 0 \text{ V}$ or V_{CC}		-	7	-	-	-	pF

^[1] For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.

^[2] This parameter is valid for any V_{CC} between 0 V and 2.1 V with a transition time of up to 10 ms. For V_{CC} = 2.1 V to V_{CC} = 5 V \pm 10 %, a transition time of up to 100 μ s is permitted.

^[3] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

^[4] This is the increase in supply current for each input at 3.4 V.

^[5] This data sheet limit may vary among suppliers.

Octal transceiver/register; non-inverting; 3-state

10. Dynamic characteristics

Table 7. Dynamic characteristics *GND = 0 V; for test circuit, see Figure 12.*

Symbol	Parameter	Conditions	25 °C	; V _{CC} =	= 5.0 V	-40 °C to V _{CC} = 5.0	Unit	
			Min	Тур	Max	Min	Max	
f _{max}	maximum frequency	see Figure 6	125	300	-	125	-	MHz
t _{PLH}	LOW to HIGH	CPAB to Bn or CPBA to An; see Figure 6	2.2	3.7	5.1	2.2	5.6	ns
	propagation delay	An to Bn or Bn to An; see Figure 7	1.5	3.0	4.3	1.5	4.8	ns
		SAB to Bn or SBA to An; see Figure 8	1.5	3.5	5.1	1.5	6.5	ns
t _{PHL}	HIGH to LOW	CPAB to Bn or CPBA to An; see Figure 6	1.7	4.3	5.1	1.7	5.6	ns
	propagation delay	An to Bn or Bn to An; see Figure 7	1.5	3.6	4.6	1.5	5.4	ns
		SAB to Bn or SBA to An; see Figure 8	1.5	4.2	5.2 <mark>[1]</mark>	1.5	5.9	ns
t _{PZH}	OFF-state to HIGH	OEBA to An; see Figure 10	2	3.2	4.6	2	5.8	ns
	propagation delay	OEAB to Bn; see Figure 10	2	3.5	6.1	2	6.5	ns
t _{PZL}	OFF-state to LOW	OEBA to An; see Figure 11	3	4.5	6.8	3	8.5	ns
	propagation delay	OEAB to Bn; see Figure 11	3	4.7	6.5	3	7.4	ns
t _{PHZ}	HIGH to OFF-state	OEBA to An; see Figure 10	1.5	3.9	4.7 <mark>[1]</mark>	1.5	5.3 <mark>[1]</mark>	ns
	propagation delay	OEAB to Bn; see Figure 10	1.5	3.8	4.6 <mark>[1]</mark>	1.5	5.5	ns
t _{PLZ}	LOW to OFF-state	OEBA to An; see Figure 11	1.5	2.9	3.8	1.5	4.1	ns
	propagation delay	OEAB to Bn; see Figure 11	1.5	3.0	4.4	1.5	5.1	ns
t _{su(H)}	set-up time HIGH	An to CPAB, Bn to CPBA; see Figure 9	3.0	0.7	-	3.0	-	ns
t _{su(L)}	set-up time LOW	An to CPAB, Bn to CPBA; see Figure 9	3.0	0.7	-	3.0	-	ns
t _{h(H)}	hold time HIGH	An to CPAB, Bn to CPBA; see Figure 9	0.0	-0.5	-	0.0	-	ns
t _{h(L)}	hold time LOW	An to CPAB, Bn to CPBA; see Figure 9	0.0	-0.5	-	0.0	-	ns
t _{WH}	pulse width HIGH	CPAB, CPBA; see Figure 6	4.0	1.0	-	4.0	-	ns
t_{WL}	pulse width LOW	CPAB, CPBA; see Figure 6	4.0	1.0	-	4.0	-	ns

^[1] This data sheet limit may vary among suppliers.

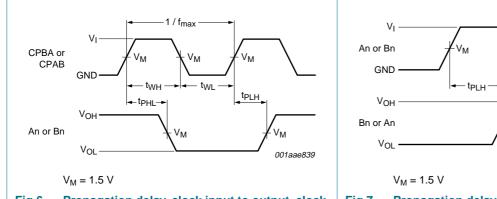
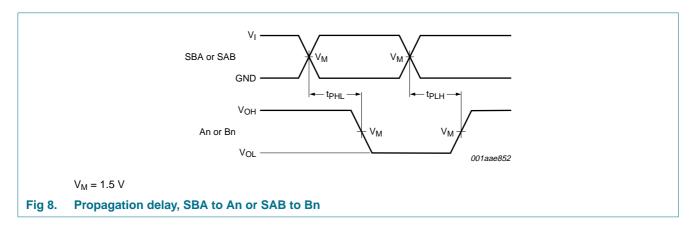
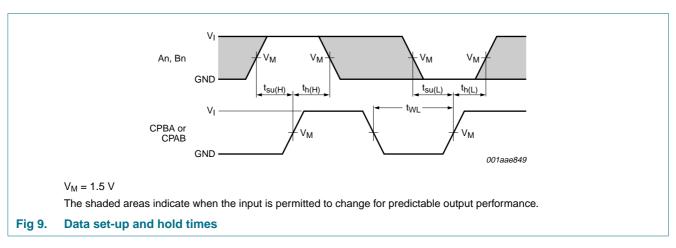
Octal transceiver/register; non-inverting; 3-state

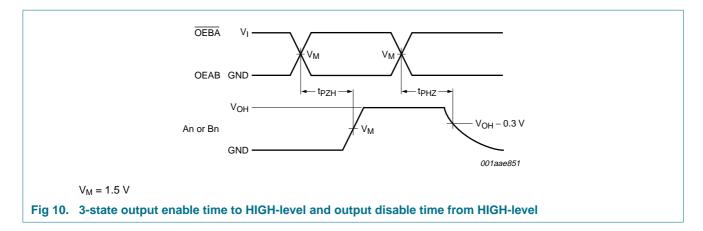
٧_M

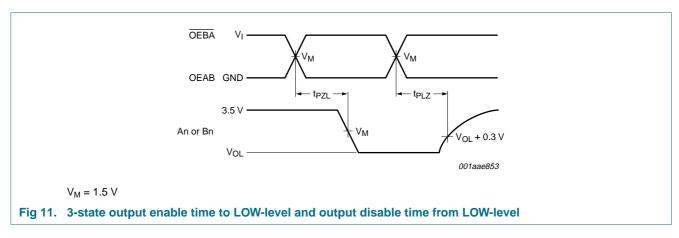
t_{PHL}

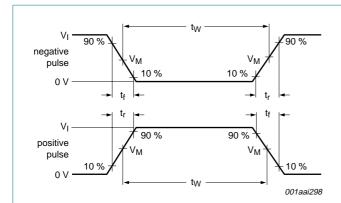
001aae904

11. Waveforms


Fig 6. Propagation delay, clock input to output, clock pulse width, and maximum clock frequency





Octal transceiver/register; non-inverting; 3-state

Octal transceiver/register; non-inverting; 3-state

a. Input pulse definition

b. Test circuit

Test data and V_{EXT} levels are given in Table 8.

R_L = Load resistance.

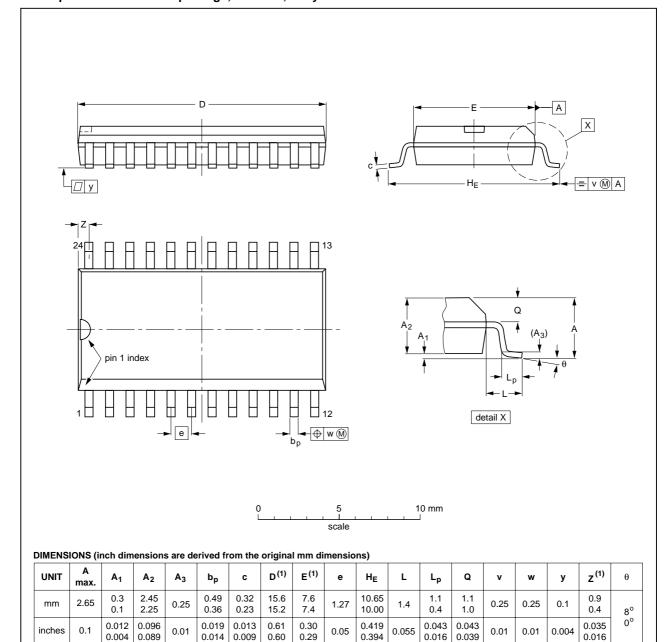
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 V_{EXT} = Test voltage for switching times.

Fig 12. Test circuit for measuring switching times

Table 8. Test data


Input				Load		V _{EXT}			
VI	f_{l} t_{W} t_{r}, t_{f}		CL	C _L R _L		t _{PHL} , t _{PLH} t _{PZH} , t _{PHZ} t			
3.0 V	1 MHz	500 ns	≤ 2.5 ns	50 pF	500Ω	open	open	7.0 V	

Octal transceiver/register; non-inverting; 3-state

12. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

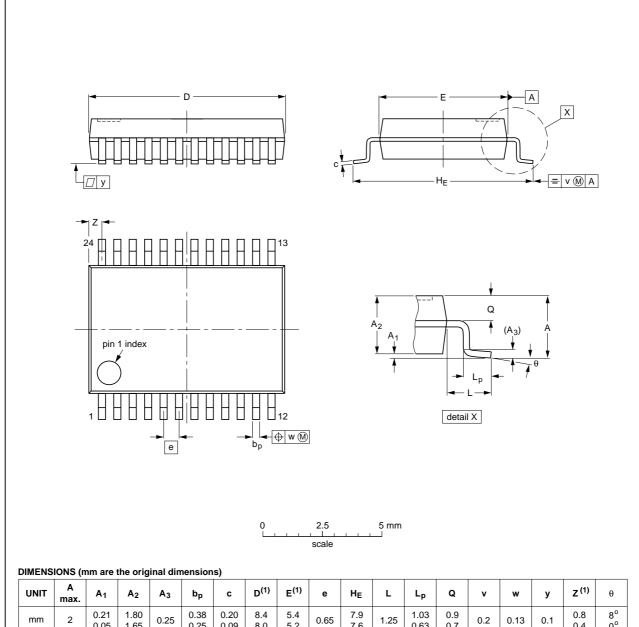
SOT137-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013				-99-12-27 03-02-19

Fig 13. Package outline SOT137-1 (SO24)


74ABT652A_2 All information provided in this document is subject to legal disclaimers.

74ABT652A NXP Semiconductors

Octal transceiver/register; non-inverting; 3-state

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

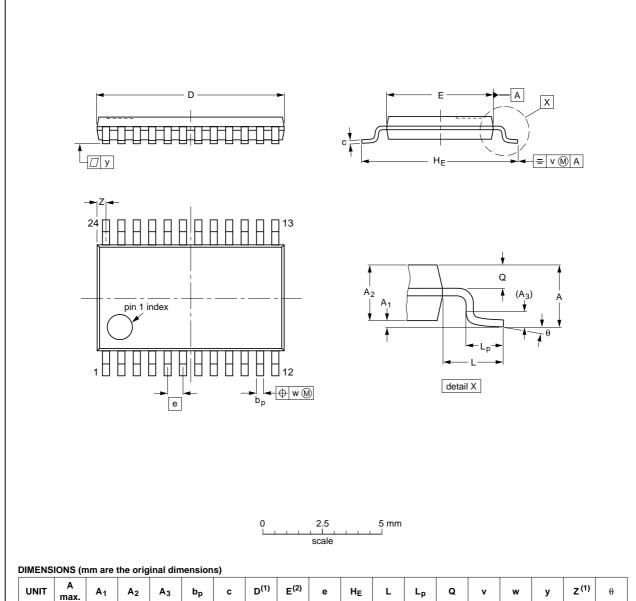
SOT340-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT340-1		MO-150				99-12-27 03-02-19


Fig 14. Package outline SOT340-1 (SSOP24)

74ABT652A_2 All information provided in this document is subject to legal disclaimers.

Octal transceiver/register; non-inverting; 3-state

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	U	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ď	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE		
	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT355-1		MO-153				-99-12-27 03-02-19	

Fig 15. Package outline SOT355-1 (TSSOP24)

74ABT652A_2 All information provided in this document is subject to legal disclaimers.

Octal transceiver/register; non-inverting; 3-state

13. Abbreviations

Table 9. Abbreviations

Acronym	Description	
BiCMOS	Bipolar Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	

14. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74ABT652A_2	20100312	Product data sheet	-	74ABT652A		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts 	have been adapted to the r	new company name whe	ere appropriate.		
	• DIP 24 (SOT222-1) package removed from <u>Section 3 "Ordering information"</u> and <u>Section 12 "Package outline"</u> .					
74ABT652A	19950419	Product specification	-	-		

Octal transceiver/register; non-inverting; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74ABT652A_2

All information provided in this document is subject to legal disclaimers.

Octal transceiver/register; non-inverting; 3-state

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74ABT652A NXP Semiconductors

Octal transceiver/register; non-inverting; 3-state

17. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Block diagram 2
5	Pinning information 5
5.1	Pinning
5.2	Pin description 5
6	Functional description 6
6.1	Function table 6
7	Limiting values 7
8	Recommended operating conditions 7
9	Static characteristics 8
10	Dynamic characteristics 9
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information 18
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.