2M Words x 32 Bits x 4 Banks (256-MBIT) SYNCHRONOUS DYNAMIC RAM

JULY 2009

FEATURES

- · Concurrent auto precharge
- · Clock rate:166/143 MHz
- · Fully synchronous operation
- · Internal pipelined architecture
- · Four internal banks (2M x 32bit x 4bank)
- · Programmable Mode
 - -CAS#Latency:2 or 3
 - -Burst Length:1,2,4,8,or full page
 - -Burst Type:interleaved or linear burst
- -Burst-Read-Single-Write
- · Burst stop function
- · Individual byte controlled by DQM0-3
- · Auto Refresh and Self Refresh
- · 4096 refresh cycles/64ms (15.6µs/row)
- · 4096 refresh cycles/32ms for industrial grade
- · Single +3.3V ±0.3V power supply
- · Interface:LVTTL
- Package: 86 Pin TSOP-2,0.50mm Pin Pitch 8x13mm, 90 Ball LF-BGA, Ball pitch 0.8mm Ph free package is queilable
- \cdot Pb-free package is available.

DESCRIPTION

The *ISSI* IS42S32800B is a high-speed CMOS configured as a quad 2M x 32 DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal,CLK).

Each of the 2M x 32 bit banks is organized as 4096 rows by 512 columns by 32 bits.Read and write accesses start at a selected locations in a programmed sequence. Accesses begin with the registration of a BankActive command which is then followed by a Read or Write command

The **ISSI** IS42S32800B provides for programmable Read or Write burst lengths of 1,2,4,8,or full page, with a burst termination operation. An auto precharge function may be enable to provide a self-timed row precharge that is initiated at the end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use.

By having a programmable mode register, the system can choose the most suitable modes to maximize its performance.

These devices are well suited for applications requiring high memory bandwidth.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

Table 1.Pin Details of IS42S32800B

Symbol	Type	Description
CLK	Input	Clock: CLK is driven by the system clock.All SDRAM input signals are sampled on the positive edge of CLK.CLK also increments the internal burst counter and controls the output registers.
CKE	Input	Clock Enable: CKE activates(HIGH)and deactivates(LOW)the CLK signal.If CKE goes low syn- chronously with clock(set-up and hold time same as other inputs),the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low.When all banks are in the idle state,deactivating the clock controls the entry to the Power Down and Self Refresh modes.CKE is synchronous except after the device enters Power Down and Self Refresh modes,where CKE becomes asynchronous until exiting the same mode. The input buffers,including CLK,are disabled during Power Down and Self Refresh modes,providing low standby power.
BS0,BS1	1 Input	Bank Select: BS0 and BS1 defines to which bank the BankActivate,Read,Write,or BankPrecharge command is being applied.
A0-A11	Input	Address Inputs: A0-A11 are sampled during the BankActivate command (row address A0-A11)and Read/Write command (column address A0-A8 with A10 defining Auto Precharge) to select one location in the respective bank. During a Precharge command, A10 is sampled to determine if all banks are to be precharged (A10 =HIGH).
		The address inputs also provide the op-code during a Mode Register Set .
CS#	Input	Chip Select:CS#enables (sampled LOW)and disables (sampled HIGH)the command decoder.All commands are masked when CS#is sampled HIGH.CS#provides for external bank selection on systems with multiple banks.It is considered part of the command code.
RAS#	Input	Row Address Strobe : The RAS#signal defines the operation commands in conjunction with the CAS#and WE#signals and is latched at the positive edges of CLK. When RAS# and CS#are asserted "LOW" and CAS# asserted "HIGH," either the BankActivate command or the Precharge command is selected by the WE#signal. When the WE# asserted "HIGH," the BankActivate command is selected and the bank designated by BS is turned on to the active state. When the WE# asserted "LOW," the Precharge command is selected and the positive designated by BS is selected and the bank designated by BS is selected and the bank designated by BS is selected and the bank designated by BS is switched to the idle state after the precharge operation.
CAS#	Input	Column Address Strobe: The CAS#signal defines the operation commands in conjunction with the RAS#and WE#signals and is latched at the positive edges of CLK. When RAS#is held "HIGH" and CS#is asserted "LOW,"the column access is started by asserting CAS#"LOW."Then, the Read or Write command is selected by asserting WE# "LOW" or "HIGH."
WE#	Input	Write Enable: The WE#signal defines the operation commands in conjunction with the RAS#and CAS#signals and is latched at the positive edges of CLK.The WE#input is used to select the BankActivate or Precharge command and Read or Write command.
DQM0-3	Input	Data Input/Output Mask: DQM0-DQM3 are byte specific,nonpersistent I/O buffer controls. The I/O buffers are placed in a high-z state when DQM is sampled HIGH.Input data is masked when DQM is sampled HIGH during a write cycle.Output data is masked (two-clock latency)when DQM is sampled HIGH during a read cycle.DQM3 masks DQ31-DQ24,DQM2 masks DQ23-DQ16,DQM1 masks DQ15-DQ8,and DQM0 masks DQ7-DQ0.
DQ0-31	Input/O	utput Data I/O: The DQ0-31 input and output data are synchronized with the positive edges of CLK.The I/Os are byte-maskable during Reads and Writes.

PIN CONFIGURATIONS

86 pin TSOP - Type II for x32

Vind 1 ● 86 Visit DA0 2 85 DA15 Vind 3 84 Uvisit DA1 4 83 Do14 DA2 5 82 Do13 DA2 6 81 Uvisit DA3 7 80 Do12 DA4 6 81 Uvisit DA3 7 Do11 0012 DA4 8 79 Do11 DA5 10 77 Do10 DA5 10 77 Do10 DA6 11 76 Do09 Visso 12 75 Visso DA6 14 73 NC Visso 16 71 Do48 Visso 10 NC NC RA5 11 9 65 Dick RA5 11 10 NC NC RA5 11 10 NC NC RA5 11 10 NC			
D000 2 88 1) D015 Vox00 1 4 88 1) D014 D01 1 4 88 1) D014 D021 5 88 1) D013 Vox0 10 7 10 10 D03 17 10 10 10 D04 8 10 D011 10 D03 17 10 D011 10 D04 8 11 10 10 D05 11 7 10 D040 D05 11 7 10 D040 D05 11 7 10 D040 D06 11 7 10 D040 D07 13 74 10 D040 NC 14 73 10 NC NC 14 10			1
Voco III 3 84 Uvso Voco III 4 88 Do14 D02 5 82 Do13 Uso III 6 81 Dvocq D03 7 80 Do14 D04 8 79 Do11 D04 8 79 Do11 Vso III 7 Do31 VssQ D05 10 77 Do31 Vso III 7 Do39 VssQ Vso III 75 DvsQ Vso III 76 Do38 Vso III 73 Do41 Vso III 71 Do34 Vso III 71 Do41 Vso III			
Doi 1 4 88 Doi 13 D02 [1] 5 82 Doi 13 VSG [2] 6 81 VooQ D03 [2] 7 80 Doi 12 D04 [1] 8 78 Doi 13 V00 [2] 9 78 VSS [2] D04 [1] 8 78 Doi 10 D06 [2] 10 77 Doi 00 OC6 [2] 11 76 Doi 00 V05 [2] 12 75 Doi 00 DOM [2] 14 71 Doi 00 DOM [2] 17 70 Doi 00 CAS [2] 10 61 NC CAS [2] 10 61 NC CAS [2] 20 65 A8 DOM [2] 21 63 A8 CAS [2] 20 65 A8 CAS [2] 21 65 A8			
022 5 82 0013 $V020$ 6 81 003 0011 003 17 00112 004 8 79 00112 004 8 79 00112 004 9 78 0021 004 10 77 0021 004 11 76 0029 005 11 76 0029 005 12 77 0029 005 12 77 0029 005 12 77 0029 005 12 77 0029 005 12 77 0029 0006 11 76 0029 00001 15 72 00011 00001 15 72 00011 00001 16 77 00011 00001 16 77 00011 00001 16 00011 00111			
VasQ 6 81 10 VopQ DQ3 17 80 10 DQ111 DQ4 18 79 10 DQ111 DQ4 19 78 10 VasQ DQ4 10 77 10 DQ101 DQ6 11 76 10 DQ3 DQ6 12 75 10 VopQ VosQ 12 75 10 VosQ DQ7 14 73 10 Ca Vob 15 72 10 VasQ Vob 15 72 10 VasQ QMWE 17 70 NC FAS 19 66 10 NC GAS 18 69 NC FAS 19 66 A3 AC 65 A8 A8 A1 12 65 A8 A1 12 65 A6 A1 12 65 A8 A2 23 65 A6 A3 A6 A7 A6 <th>DQ1</th> <th>4 83</th> <th>DQ14</th>	DQ1	4 83	DQ14
DQ3 7 40 80 10 D012 DQ4 8 78 10 D011 DQ6 10 77 10 D010 DQ6 11 76 10 VocQ USSQ 12 75 10 VocQ VSSQ 12 75 10 VocQ NC 14 73 10 NC VSSQ 16 71 10 D041 VSSQ 16 71 10 D048 VSSQ 16 71 10 D041 VSSQ 16 71 10 D041 VSSQ 16 71 10 D041 VSSQ 12 9 10 NC RAS 19 0 68 10 CLK VSSQ 12 66 10 A8 10 A11 21 66 10 A6 10 A2 23 64 10 A7 10 A30 22 65 10 A6 10 A4 10 24 69 10 D0M3 10 A4 10 25<	DQ2	5 82	□ DQ13
DO4 II 8 78 DO111 VD0G 9 78 VSSQ DO5 10 77 DQ10 DO6 11 76 DQ9 VSSQ 122 75 VocQ DO7 13 74 DQ8 NC 14 73 NC VocQ 15 72 VSS DAM0 16 71 DQM1 CAS 18 86 NC Voc 177 70 NC CAS 18 86 NC FAS 19 68 NC CKE 20 67 CKE A11 21 68 A8 L 22 66 A8 A11 21 61 A8 L 22 65 A8 L 23 64 A7 L 24 61 A4 L 25 62 A8 L 27 60 A3 </th <th>VssQ 🗖</th> <th>6 81</th> <th></th>	VssQ 🗖	6 81	
Veco II 9 72 11 VssQ DQ5 II 10 77 11 Dq0 DQ6 II 111 76 11 Dq0 VssQ II 12 76 11 VscQ DQ7 II 13 74 11 Dq08 NC II 14 76 11 Dq08 VocQ 15 72 11 NC DQM0 II 16 71 11 Dq0M1 VocQ 16 71 11 NC VocQ 16 11 A 11 VocQ 6 11 A7 11 VocQ 6 11 A7 11 VocQ 22 66 11 A7 A10 22 66 11 A7 A11 12 11 A 16 VocQ 10 11 A <td< th=""><th>DQ3 [</th><th>7 80</th><th> DQ12</th></td<>	DQ3 [7 80	DQ12
DQ6 10 77 DQ10 DQ6 11 76 DQ9 VSSQ 12 76 DVspQ DQ7 13 74 DQ8 VSSQ 14 73 NC V00 15 72 Vss DQM0 16 71 DQM1 VE 17 70 NC CAS 19 68 CLK CS 20 67 CKE A11 21 66 A8 A2 22 64 A7 A6 A8 A8 A8 A11 22 64 A7 A11 24 64 A7 A4 25 62 A8 A11 24 64 A7 A2 77 60 A3 DQM2 28 59 DQM3 DQ16 31 36 DQ3 V00 12 19 A6 DQ3 33 55 DVsQ	DQ4	8 79	DQ11
DOS 10 77 DO(10) DOS 11 76 DO(9) VSSQ 12 76 DVoDQ DOT 13 74 DOS VSSQ 14 71 DOS VOD 15 72 DVSSQ DQMO 16 71 DQM1 VE 17 70 NC CASS 19 68 CLK CS 20 67 CKE A11 21 66 A8 A2 22 68 A8 A11 22 64 A7 A30 25 62 A8 A11 24 68 A6 A2 27 60 A8 A31 25 62 A5 A11 26 59 DOM3 DOM2 28 59 DOM3 VDO 33 54 DO3 DOM3 55 VOQ DQ2 DA3 55 DVOQ <th>VDDQ</th> <th>9 78</th> <th>VssQ</th>	VDDQ	9 78	VssQ
DOG 11 76 DOG Visa 12 76 VoDQ DAT 13 74 DOB NC 14 73 NC VDD 15 72 VSS DQMO 16 71 DQM1 VWD 17 70 NC QAMO 16 71 DQM1 VSS 19 68 CK CAS 12 66 AS A11 21 66 AS BAO 22 65 AS A11 24 64 A7 A0 22 65 AS A0 25 62 AS A2 27 60 A3 A2 27 60 AS A2 27 50 DOAS <t< th=""><th></th><th></th><th></th></t<>			
Visio 12 75 VooQ DQ7 13 74 DQ8 NC 14 73 NC Voo 15 72 Vss DQM0 16 71 DQM1 Vic 17 10 DQM1 VWE 17 10 DQM1 VWE 18 69 NC VIC 18 69 NC VIC 18 69 NC VIC 10 CK CK AAS 19 68 CK CK 22 65 A8 AA11 21 66 A9 AA10 22 65 A8 AA10 24 61 A7 AA11 26 11 A4 AA1 27 60 A3 DQM3 27 61 A3 DQ16 31 56 VosQ Voo 29 51 VoQ DQ17 33 54 DQ30 <th></th> <th></th> <th></th>			
DQ7 I1 I3 74 IDQ8 NC I4 73 IDQ6 Vbb I5 72 VSS DQM0 I16 71 IDQM1 WE I7 IDQM1 DQM1 WE I7 IDQM1 DQM1 WE IT TO DQM1 WE IT IDQ CLK CAS II 19 68 ICLK A11 II 21 68 IA9 BAO II 22 65 IA8 BA1 II 23 64 IA7 A10 II 26 II A4 A2 II 26 II A4 II 26 II A4 III A4 III 31 III III DQM2 IIII A3 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
NC 14 73 NC VDD 15 72 VSS VDD 16 71 DOM1 WE 17 70 NC CAS 18 69 NC CAS 19 61 CLK CS 20 67 CKE A11 21 61 A9 CAS 22 61 A8 A11 21 61 A9 A11 22 61 A8 A0 22 61 A5 A0 25 62 A5 A10 24 61 A4 A2 27 61 A4 A2 27 61 A4 A2 27 61 A4 A2 27 61 A4 A3 20 75 NC DQM2 28 9 DQM3 VbD 29 55 VbDQ DQ16 31 56 DQ30			
VDD 15 72 VSS DQM0 16 71 DQM1 WE 17 70 NC CAS 18 69 NC RAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA1 23 64 A7 A10 24 63 A6 A2 27 60 A3 A41 26 61 A4 A2 27 60 A3 A2 27 60 A3 A3 20 58 Vss VDD 29 58 Vss VD 29 58 Vss VD 29 58 Vss VD 29 58 Vss VD 33 54 DQ30 DQ16 31 53 DQ29 VSSQ 33 48 DQ26 DQ20 37 50 DQ26 <th></th> <th></th> <th></th>			
DQM0 16 71 DQM1 WE 17 0 NC CAS 18 68 CLK RAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 A11 23 64 A7 A10 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss Vbb 29 58 Vss Vbb 33 54 DQ30 DQ16 31 56 DQ30 Vbb 35 DQ28 DQ4 Vbb 38 49 DQ28 Vbb 38 49 DQ28 Vbb 38 49 DQ28 Vbb 38 49 DQ28 Vbb 38 49 DQ26<			
WE 17 70 11 NC CAS 18 69 11 NC FAS 20 67 1 CLK GS 20 67 1 CKE A11 21 66 14 A9 BA1 22 65 14 A8 BA1 23 64 14 A7 A10 24 63 14 A8 A10 24 63 14 A8 A10 24 63 14 A7 A11 26 61 14 A4 A2 27 60 14 A4 DQM2 29 58 10QM3 Vob 29 58 10QM3 Vob 22 55 10QA DQ16 31 56 10Q31 VsSQ 32 55 10QQ3 VasQ 41 53 10Q29 VasQ 37 10Q28 10Q27 VsSQ 38 <th></th> <th></th> <th></th>			
CAS 18 69 NC RAS 19 68 CLK CS 20 61 A9 A11 21 66 A9 BA0 22 65 A8 A11 23 66 A7 A10 24 63 A6 A0 25 62 A5 A11 26 A1 A4 A2 27 60 A3 DQM2 28 59 DQM3 VSSQ 30 57 NC A2 27 60 A3 VSSQ 30 57 NC A2 27 60 A4 A2 29 58 DQM3 VSQ 30 57 NC A2 31 VSS YSS A11 23 55 DQ30 A2 31 VSS YSS A2 34 D33 DQ29 YSQ 36 1 DQ28			
RAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A2 27 60 A3 DQM2 28 9 DQM3 DQM2 28 9 DQM3 VDD 29 58 Vss NC 31 64 DQ31 VDD 22 55 VbQ VDQ 32 55 VbQ VDQ 32 55 VbQ VDQ 35 20 Vsq VDQ 35 20 Vsq VDQ 36 51 DQ28 VSQ 38 49 Voq DQ19 36 51 DQ26 VSQ 38 48 DQ26 DQ21 39 48 DQ26 DQ22 42 46 DQ24<			
CS 20 67 CKE A11 21 66 A9 BA0 22 64 A7 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A10 26 61 A7 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 VSS Vbb 29 58 VSS Vbb 29 55 VSS Vbb 22 55 VSS Vbb 22 55 VSS Vbb 23 55 VDQ VssQ 32 55 VDQ Vbq 35 52 VSSQ Vbq 38 41 DQ28 Vbq 38 49 VDQ2 Vbq 41 46 VSQ Vbq 41 45 DQ26 Vbq 42 45 DQ24			
A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vob 28 58 Vss Vob 29 58 Vss DQM2 28 59 DQM3 Vob 29 58 Vss DQ16 31 56 DQ31 VssQ 32 55 VobQ DQ17 33 54 DQ29 VobQ 35 52 VssQ VobQ 38 49 VobQ DQ21 39 48 DQ26 DQ22 42 45 DQ24			
BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A10 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vss 29 58 Vss NC 30 57 NC DQ16 31 64 DQ30 VssQ 32 55 VoQ VsQ 33 54 DQ30 VsQ 35 DQ29 VsQ VbQ 37 51 VsQ VbQ 37 51 DQ29 VbQ 37 51 DQ29 VbQ 37 51 DQ29 VbQ 38 49 VbQQ VbQ 38 49 VbQ4 VbQ 41 46 VsQ VbQ 41 46 VsQ			
BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VoDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDQ 35 52 VsQ VDQ 37 50 DQ27 VsSQ 38 49 VDQ DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ21 40 47 DQ25 VDQ 41 46 VsSQ DQ23 42 45 DQ24			
A10 [] 24 63] A6 A0 [] 25 62] A5 A5 A4 A1 [] 26 61] A4 A4 A2 [] 27 60] A3 DQM2 [] 28 59] DQM3 Vbb [] 29 58] Vss Vss Vcs Q [] 32 56] DQ31 VssQ [] 32 56] DQ31 VcbQ DQ17 [] 33 54] DQ30 DQ17 [] 33 54] DQ30 DQ29 VcbQ DQ17 [] 33 54] DQ30 DQ29 VcbQ DQ17 [] 36 51] DQ29 VcsQ DQ17 [] 36 52] VssQ DQ29 VcsQ DQ17 [] 36 51] DQ28 DQ29 VcsQ DQ19 [] 36 51] DQ28 DQ29 VcsQ DQ19 [] 36 51] DQ28 DQ29 VcsQ DQ29 VcsQ DQ19 [] 36 51] DQ28 DQ29 VcsQ DQ29 VcsQ DQ17 38 40] DQ28 DQ29 VcsQ DQ27 VcsQ DQ26 DQ27 VcsQ DQ26 DQ27 VcsQ DQ26 DQ22 40 41 42 45] DQ24			
A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VbQ DQ17 33 54 DQ30 DQ18 35 52 Vsq VbQ 35 51 DQ29 VbQ 35 51 DQ28 DQ20 37 50 DQ27 Vsq 38 49 VbQ DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ21 39 48 DQ26 DQ22 41 46 Vsq DQ23 42 45 DQ24			
A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VbD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VsQ 22 55 VbQQ DQ17 33 54 DQ30 VbQ 35 VsQ VsQ VbQ 35 VsQ VsQ VbQ 36 DQ27 VsQ 38 49 VbQQ VsQ 38 49 VbQQ VbQ2 41 46 VsQ DQ21 39 48 DQ26 DQ22 41 46 VsQ			
A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VSQ 32 55 VbDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VbDQ DQ21 39 48 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
DQM2 28 59 DQM3 VDD 29 58 VSs NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDQ DQ17 33 54 DQ29 VDQ 35 1 DQ29 VDQ 35 1 DQ29 VDQ 36 51 DQ27 VSQ 38 49 VDQ VSQ 38 49 VDQ2 DQ21 39 48 DQ25 VDQ 41 46 VSQ DQ23 42 45 DQ24			
VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VDQ26 DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VSSQ			
NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 VSSQ 38 49 VDQCQ VSSQ 39 VD26 47 DQ22 40 47 DQ25 VDQ 41 46 VSSQ DQ23 42 45 DQ24			
DQ16 31 56 DQ31 VssQ 32 55 VbpQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbpQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VbpQ VbQ21 39 48 DQ26 DQ22 40 47 DQ25 VbpQ 41 46 VssQ DQ23 42 45 DQ24			
VSSQ 12 55 VDDQ DQ17 13 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 138 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VSSQ DQ23 42 45 DQ24			
DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VoDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VoDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VoDQ 41 46 VssQ DQ23 42 45 DQ24			
VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VbDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VbDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VbDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDQ 41 46 VssQ DQ23 42 45 DQ24			
VSSQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VSSQ DQ23 42 45 DQ24			
DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24			
DQ22 40 47 DQ25 VDDQ 41 46 VssQ DQ23 42 45 DQ24			
VDDQ 41 46 VssQ DQ23 42 45 DQ24			
		41 46	
	VDD 🔲	43 44	Vss

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
VDDQ	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	NoConnection

PIN CONFIGURATION

PACKAGE CODE: B 90 BALL LF-BGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A8	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
VDDQ	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	NoConnection

Operation Mode

Fully synchronous operations are performed to latch the commands at the positive edges of CLK. Table 2 shows the truth table for the operation commands.

Command	State	CKEn-1	CKE	DQM ⁽⁶⁾	BS0,1	A10	A11,A9-0	CS#	RAS#	CAS#	WE#			
BankActivate	Idle (3)	Н	Х	Х	V	Row	address	L	L	Н	Н			
BankPrecharge	Any	Н	Х	Х	V	L	Х	L	L	Н	L			
PrechargeAll	Any	Н	Х	Х	Х	Н	Х	L	L	Н	L			
Write	Active (3)	Н	Х	Х	V	L	Column	L	Н	L	L			
Write and Auto Precharge	Active (3)	Н	Х	Х	V	Н	address (A0 ~A8)	L	Н	L	L			
Read	Active (3)	Н	Х	Х	V	L	Column	L	Н	L	Н			
Read and Autoprecharge	Active (3)	Н	Х	Х	V	Н	address (A0 ~A8)	L	Н	L	Н			
Mode Register	Set Idle	Н	Х	Х		OP	code	L	L	L	L			
No-Operation	Any	Н	Х	Х	Х	Х	Х	L	Н	Н	Н			
Burst Stop	Active ⁽⁴⁾	Н	Х	Х	Х	Х	Х	L	Н	Н	L			
Device Deselect	Any	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х			
AutoRefresh	ldle	Н	Н	Х	Х	Х	Х	L	L	L	Н			
SelfRefresh Entry	Idle	Н	L	Х	Х	Х	Х	L	L	L	Н			
SelfRefresh Exit	Idle	L	Н	Х	Х	Х	Х	Н	Х	Х	Х			
	(SelfRefresh)							L	Н	Н	Н			
Clock Suspend Mode Entry	Active	Н	L	Х	Х	Х	Х	Х	Х	Х	Х			
Power Down Mode Entry	Any ⁽⁵⁾	Н	L	Х	Х	Х	Х	Н	Х	Х	Х			
								L	Н	Н	Н			
Clock Suspend Mode Exit	Active	L	Н	Х	Х	Х	Х	Х	Х	Х	Х			
Power Down Mode Exit	Any	L	Н	Х	Х	Х	Х	Н	Х	Х	Х			
	(PowerDown)							L	Н	Н	Н			
Data Write/Output Enable	Active	Н	Х	L	Х	Х	Х	Х	Х	Х	Х			
Data Mask/Output Disable	Active	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х			

Table 2.Truth Table (Note (1),(2))

Note:

1. V =Valid,X =Don 't care,L =Logic low,H =Logic high

2. CKEn signal is input level when commands are provided.

CKEn-1 signal is input level one clock cycle before the commands are provided.

3. These are states of bank designated by BS signal.

4. Device state is 1,2,4,8,and full page burst operation.

5. Power Down Mode can not enter in the burst operation.

When this command is asserted in the burst cycle, device state is clock suspend mode.

6. DQM0-3

Commands

1 BankActivate

(RAS#="L",CAS#="H",WE#="H",BS =Bank,A0-A11 =Row Address)

The BankActivate command activates the idle bank designated by the BS0,1 (Bank Select) signal.By latching the row address on A0 to A11 at the time of this command, the selected row access is initiated. The read or write operation in the same bank can occur after a time delay of tRCD(min.)from the time of bank activation.A subsequent BankActivate command to a different row in the same bank can only be issued after the previous active row has been precharged (refer to the following figure). The minimum time interval between successive BankActivate commands to the same bank is defined by tRC(min.). The SDRAM has four internal banks on the same chip and shares part of the internal circuitry to reduce chip area; therefore it restricts the back-to-back activation of the four banks.tRRD(min.) specifies the minimum time required between activating different banks. After this command is used, the Write command and the Block Write command perform the no mask write operation.

2 BankPrecharge command

(RAS#="L",CAS#="H",WE#="L",BS =Bank,A10 ="L")

The BankPrecharge command precharges the bank disignated by BS0,1 signal.The

precharged bank is switched from the active state to the idle state. This command can be asserted anytime after tRAS(min.)is satisfied from the BankActivate command in the desired bank. The maximum time any bank can be active is specified by tRAS(max.). Therefore, the precharge function must be performed in any active bank within tRAS(max.). At the end of precharge, the precharged bank is still in the idle state and is ready to be activated again.

3 PrechargeAll command

(RAS#="L",CAS#="H",WE#="L",BS =Don t care,A10 ="H")

The Precharge All command precharges all the four banks simultaneously and can be issued even if all banks are not in the active state. All banks are then switched to the idle state.

4 Read command

(RAS#="H",CAS#="L",WE#="H",BS =Bank,A10 ="L",A0-A8 =Column Address)

The Read command is used to read a burst of data on consecutive clock cycles from an active row in an active bank. The bank must be active for at least tRCD(min.) before the Read command is issued. During read bursts, the valid data-out element from the starting column address will be available following the CAS# latency after the issue of the Read command. Each subsequent data- out element will be valid by the next positive clock edge (refer to the following figure). The DQs go into high-impedance at the end of the burst unless other command is initiated. The burst length, burst sequence, and CAS# latency are determined by the mode register which is already programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue).

Burst Read Operation(Burst Length =4,CAS#Latency =2,3)

The read data appears on the DQs subject to the values on the DQM inputs two clocks earlier (i.e.DQM latency is two clocks for output buffers). A read burst without the auto precharge function may be interrupted by a subsequent Read or Write command to the same bank or the other active bank before the end of the burst length. It may be interrupted by a BankPrecharge/PrechargeAll command to the same bank too. The interrupt coming from the Read command can occur on any clock cycle following a previous Read command (refer to the following figure).

Read Interrupted by a Read (Burst Length =4,CAS#Latency =2,3)

The DQM inputs are used to avoid I/O contention on the DQ pins when the interrupt comes from a Write command. The DQMs must be asserted (HIGH)at least two clocks prior to the Write command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/O contention, a single cycle with high-impedance on the DQ pins must occur between the last read data and the Write command (refer to the following three figures). If the data output of the burst read occurs at the second clock of the burst write, the DQMs must be asserted (HIGH)at least one clock prior to the Write command to avoid internal bus contention.

Read to Write Interval (Burst Length = 4,CAS#Latency =2)

Read to Write Interval (Burst Length = 4,CAS#Latency =2)

A read burst without the auto precharge function may be interrupted by a BankPrecharge/ PrechargeAll command to the same bank.The following figure shows the optimum time that BankPrecharge/PrechargeAll command is issued in different CAS#latency.

Read to Precharge (CAS#Latency =2,3)

5 Write command

(RAS#="H",CAS#="L",WE#="L",BS =Bank,A10 ="L",A0-A8 =Column Address)

The Write command is used to write a burst of data on consecutive clock cycles from an active row in an active bank. The bank must be active for at least tRCD(min.) before the Write command is issued. During write bursts, the first valid data-in element will be registered coincident with the Write command. Subsequent data elements will be registered on each successive positive clock edge (refer to the following figure). The DQs remain with high-impedance at the end of the burst unless another command is initiated. The burst length and burst sequence are determined by the mode register, which is already programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue).

Burst Write Operation (Burst Length =4,CAS#Latency =2,3)

A write burst without the AutoPrecharge function may be interrupted by a subsequent Write, BankPrecharge/ PrechargeAll,or Read command before the end of the burst length.An interrupt coming from Write command can occur on any clock cycle following the previous Write command (refer to the following figure).

Write Interrupted by a Write (Burst Length =4,CAS#Latency =2,3)

The Read command that interrupts a write burst without auto precharge function should be issued one cycle after the clock edge in which the last data-in element is registered. In order to avoid data contention, input data must be removed from the DQs at least one clock cycle before the first read data appears on the outputs (refer to the following figure). Once the Read command is registered, the data inputs will be ignored and writes will not be executed.

Write Interrupted by a Read (Burst Length =4,CAS#Latency =2,3)

The BankPrecharge/PrechargeAll command that interrupts a write burst without the auto precharge function should be issued *m* cycles after the clock edge in which the last data-in element is registered, where *m* equals tWR/ tCK rounded up to the next whole number. In addition, the DQM signals must be used to mask input data, starting with the clock edge following the last data-in element and ending with the clock edge on which the BankPrecharge/ PrechargeAll command is entered (refer to the following figure).

Note: The DQMs can remain low in this example if the length of the write burst is 1 or 2. Write to Precharge

6 Concurrent Auto Precharge

An access command (READ or WRITE) to another bank while an access command with auto precharge enabled is executing is not allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. ICSI SDRAMs support CONCURRENT AUTO PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below.

READ with Auto Precharge

• Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is regis-tered.

READ With Auto Precharge Interrupted by a READ

• Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered.

READ With Auto Precharge Interrupted by a WRITE

WRITE with Auto Precharge

 Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out ap- pearing CAS latency later. The PRECHARGE to bank n will begin after t WR is met, where t WR begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.

WRITE With Auto Precharge Interrupted by a READ

 Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a WRITE on bank n when registered. The PRECHARGE to bank n will begin after t WR is met, where t WR begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank m.

WRITE With Auto Precharge Interrupted by a WRITE

7 Mode Register Set command

(RAS#="L",CAS#="L",WE#="L",BS0,1 and A11-A0 =Register Data)

The mode register stores the data for controlling the various operating modes of SDRAM. The Mode Register Set command programs the values of CAS#latency,Addressing Mode and Burst Length in the Mode register to make SDRAM useful for a variety of different applications. The default values of the Mode Register after power-up are undefined; therefore this command must be issued at the power-up sequence. The state of pins BS0,1 and A11~A0 in the same cycle is the data written to the mode register. One clock cycle is required to complete the write in the mode register (refer to the following figure). The contents of the mode register can be changed using the same command and the clock cycle requirements during operation as long as all banks are in the idle state.

Mode Register Set Cycle

The mode register is divided into various fields depending on functionality.

Address	BS0,1	A11/A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
Function	RFU*		WBL	Test	Node	CA	S Later	су	BT	Bu	rst Leng	gth

*Note:RFU (Reserved for future use)should stay 0 during MRS cycle.

[∎] Burst Length Field (A2~A0)

This field specifies the data length of column access using the A2~A0 pins and selects the Burst Length to be 2, 4,8,or full page.

 A2	A1	A0	Burst Length
 0	0	0	1
 0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Full Page

• Burst Type Field (A3)

The Burst Type can be one of two modes, Interleave Mode or Sequential Mode.

A3	Burst Type
0	Sequential
1	Interleave

-Addressing Sequence of Sequential Mode

An internal column address is performed by increasing the address from the column address which is input to the device. The internal column address is varied by the Burst Length as shown in the following table. When the value of column address, (n +m), in the table is larger than 255, only the least significant 8 bits are effective.

Data n	0	1	2	3	4	5	6	7	-	255	256	257	-
Column Address	n	n+1	n+2	n+3	n+4	n+5	n+6	n+7	-	n+255	n	n+1	-
		words:											
Burst Length	4 ۱	words:											
	8 words:												
	Full	Full Page: Column address is repeated until terminated.											

Addressing Sequence of Interleave Mode

A column access is started in the input column address and is performed by inverting the address bits in the sequence shown in the following table.

Data n	Column Address						Bur	st Length		
Data 0	A7	A6	A5	A4	A3	A2	A1	A0		
Data 1	A7	A6	A5	A4	A3	A2	A1	A0#	4 words	
Data 2	A7	A6	A5	A4	A3	A2	A1#	A0		
Data 3	A7	A6	A5	A4	A3	A2	A1#	A0#		8 words
Data 4	A7	A6	A5	A4	A3	A2#	A1	A0		
Data 5	A7	A6	A5	A4	A3	A2#	A1	A0#		
Data 6	A7	A6	A5	A4	A3	A2#	A1#	A0		
Data 7	A7	A6	A5	A4	A3	A2#	A1#	A0#		

CAS#Latency Field (A6~A4)

This field specifies the number of clock cycles from the assertion of the Read command to the first read data. The minimum whole value of CAS#Latency depends on the frequency of CLK. The minimum whole value satisfying the following formula must be programmed into this field. $t_{CAC}(min) \le CAS#Latency X t_{CK}$

			-
A6	A5	A4	CAS#Latency
0	0	0	Reserved
0	0	1	Reserved
0	1	0	2 clocks
0	1	1	3 clocks
1	Х	Х	Reserved

Test Mode field (A8~A7)

These two bits are used to enter the test mode and must be programmed to "00" in normal operation.

A8	A7	Test Mode
0	0	normal mode
0	1	Vendor Use Only
1	X	Vendor Use Only

Write Burst Length (A9)

This bit is used to select the burst write length.

A9	Write Burst Length
0	Burst
1	Single Bit

8 No-Operation command

(RAS#="H",CAS#="H",WE#="H")

The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS# is Low). This prevents unwanted commands from being registered during idle or wait states.

9 Burst Stop command

(RAS#="H",CAS#="H",WE#="L")

The Burst Stop command is used to terminate either fixed-length or full-page bursts. This command is only effective in a read/write burst without the auto precharge function. The terminated read burst ends after a delay equal to the CAS#latency (refer to the following figure). The termination of a write burst is shown in the following figure.

Termination of a Burst Read Operation (Burst Length > 4,CAS#Latency =2,3)

Termination of a Burst Write Operation (Burst Length =X)

10 Device Deselect command (CS#="H")

The Device Deselect command disables the command decoder so that the RAS#,CAS#,WE# and Address inputs are ignored,regardless of whether the CLK is enabled.This command is similar to the No Operation command.

11 AutoRefresh command

(RAS#="L",CAS#="L",WE#="H",CKE ="H")

The AutoRefresh command is used during normal operation of the SDRAM and is analogous to CAS#-before-RAS#(CBR)Refresh in conventional DRAMs. This command is non-persistent, so it must be issued each time a refresh is required. The addressing is generated by the internal refresh controller. This makes the address bits a "don 't care" during an AutoRefresh command. The internal refresh counter increments automatically on every auto refresh cycle to all of the rows. The refresh operation must be performed 4096 times within 64ms (32ms for Industrial grade). The time required to complete the auto refresh operation is specified by tRC(min.). To provide the AutoRefresh command, all banks need to be in the idle state and the device must not be in power down mode (CKE is high in the previous cycle). This command must be followed by NOPs until the auto refresh operation is completed. The precharge time requirement, tRP(min), must be met before successive auto refresh operations are performed.

12 SelfRefresh Entry command

(RAS#="L",CAS#="L",WE#="H",CKE ="L")

The SelfRefresh is another refresh mode available in the SDRAM. It is the preferred refresh mode for data retention and low power operation. Once the SelfRefresh command is registered, all the inputs to the SDRAM become "don 't care" with the exception of CKE, which must remain LOW. The refresh addressing and timing is internally generated to reduce power consumption. The SDRAM may remain in SelfRefresh mode for an indefinite period. The SelfRefresh mode is exited by restarting the external clock and then asserting HIGH on CKE (SelfRefresh Exit command).

13 SelfRefresh Exit command

(CKE ="H",CS#="H"or CKE ="H",RAS#="H",CAS#="H",WE#="H")

This command is used to exit from the SelfRefresh mode.Once this command is registered, NOP or Device Deselect commands must be issued for tRC(min.)because time is required for the completion of any bank currently being internally refreshed.If auto refresh cycles in bursts are performed during normal operation, a burst of 4096 auto refresh cycles should be completed just prior to entering and just after exiting the SelfRefresh mode.

- 14 Clock Suspend Mode Entry /PowerDown Mode Entry command (CKE ="L") When the SDRAM is operating the burst cycle, the internal CLK is suspended (masked) from the subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held intact while CLK is suspended. On the other hand, when all banks are in the idle state, this command performs entry into the PowerDown mode. All input and output buffers (except the CKE buffer) are turned off in the PowerDown mode. The device may not remain in the Clock Suspend or PowerDown state longer than the refresh period (64ms) since the command does not perform any refresh operations.
- 15 Clock Suspend Mode Exit /PowerDown Mode Exit command

When the internal CLK has been suspended, the operation of the internal CLK is einitiated from the subsequent cycle by providing this command (asserting CKE "HIGH"). When the device is in the PowerDown mode, the device exits this mode and all disabled buffers are turned on to the active state.tpDE(min.) is required when the device exits from the PowerDown mode. Any subsequent commands can be issued after one clock cycle from the end of this command.

16 Data Write /Output Enable,Data Mask /Output Disable command (DQM ="L","H") During a write cycle,the DQM signal functions as a Data Mask and can control every word of the input data.During a read cycle,the DQM functions as the controller of output buffers.DQM is also used for device selection,byte selection and bus control in a memory system.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters	Rating	Unit
Vdd	Supply Voltage (with respect to Vss)	-0.5 to +4.6	V
Vddq	Supply Voltage for Output (with respe	ect to Vssq) -0.5 to +4.6	V
Vi	Input Voltage (with respect to Vss)	–0.5 to V _{DD} +0.5	V
Vo	Output Voltage (with respect to Vsso	a) -1.0 to VDDQ+0.5	V
lo	Short circuit output current	50	mA
PD	Power Dissipation (T _A = 25 °C)	1	W
Торт	Operating Temperature Co	m. 0 to +70	°C
	Ind	40 to +85	
Тѕтс	Storage Temperature	–65 to +150	°C

Notes:

1. Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vddq	Supply Voltage for DQ	3.0	3.3	3.6	V
Vih	High Level Input Voltage (all Inputs)	2.0	—	Vdd + 0.3	V
VIL	Low Level Input Voltage (all Inputs)	-0.3	—	+0.8	V

Notes:

1. All voltages are referenced to Vss = 0V

2. VIH(overshoot): VIH (max) = VDD + 2V (pulse width \leq 3ns)

3. VIL(undershoot): VIL (min) = - 2V (pulse width \leq 3ns)

CAPACITANCE CHARACTERISTICS

(At TA = 0 ~ 70°C, VDD = VDDQ = 3.3 ± 0.3V, Vss = Vssq = 0V, unless otherwise noted)

Symbol	Parameter	Min.	Max.	Unit
Сім	Input Capacitance, address & control pin	1.5	3.0	pF
Сськ	Input Capacitance, CLK pin	1.5	3.0	pF
Cı/o	Data Input/Output Capacitance	3.0	5.5	pF

D.C. Electrical Characteristics (Recommended Operating Conditions)

Description/Test condition	Description/Test condition			Unit	Note
Operating Current trc ≥ trc(min), Outputs Open, Input signal one transition per one cycle	$Rc \ge tRc(min)$, Outputs Open, Input operation		135/125		3
Precharge Standby Current in power do tcκ = 15ns, CKE ≤ V⊫(max)		ICC2P	3		3
Precharge Standby Current in power do tcκ = ∞, CKE ≤ Vi∟(max)		ICC2PS	2		
Precharge Standby Current in non-power tck = 15ns, CS# \geq VIH(min), CKE \geq VIH Input signals are changed once during		Ісс2и	20		3
Precharge Standby Current in non-power down mode $t_{CK} = \infty$, $CLK \le V_{\mathbb{H}}(max)$, $CKE \ge V_{\mathbb{H}}$			9		
Active Standby Current in power down n C KE ≤ Vi∟(max), tcκ = 15ns	Іссзр	4	mA	3	
Active Standby Current in power down mode CKE& CLK ≤ Vι∟(max), tcκ = ∞			3		3
Active Standby Current in non-power down mode CKE ≥ VIH(min), CS# ≥ VIH(min), tcκ = 15ns			45		
Active Standby Current in non-power down mode CKE ≥ Vιн(min), CLK ≤ Vι∟(max), tcκ = ∞		Іссзія	30		
Operating Current (Burst mode) tcк=tcк(min), Outputs Open, Multi-bank interleave		Icc4	180/150		3, 4
Refresh Current trc ≥ trc(min)		Icc5	300/270		3
Self Refresh Current C KE \leq 0.2V		Icc6	1.5		

Parameter	Description	Min.	Max.	Unit	Note
١L	Input Leakage Current ($0V \le VIN \le VDD$, All other pins not under test = $0V$)	- 1	+ 1	μA	
Iol	Output Leakage Current ($0V \le VOUT \le VDD$, DQ disable)	- 1.5	+ 1.5	μA	
Vон	LVTTL Output "H" Level Voltage (Iout = -2mA)	2.4		V	
Vol	LVTTL Output "L" Level Voltage (lout = 2mA)		0.4	V	

AC Electrical Characteristics (Recommended Operating Conditions)^{5,6,7,8}

			- 6/	17		
Symbol	A.C. Parameter		Min.	Max.	Unit	Note
trc	Row cycle time (same bank)		60/70			9
t RRD	Row activate to row activate delay (different banks)		12/14			9
trcd	RAS# to CAS# delay (same bank)		18/20			9
t RP	Precharge to refresh/row activate c (same bank)	command	18/20			9
tras	Row activate to precharge time (same bank)	42/45	120,000		9	
tск2	Clock cycle time CL* = 2 CL* = 3		7.5/10			
tскз			6/7		ns	
tac	Access time from CLK (positive edge)			5.5/5.5		9
tон	Data output hold time		2/2.5			9
tсн	Clock high time		2.5/2.5			10
tc∟	Clock low time		2.5/2.5			10
tıs	Data/Address/Control Input set-up	time	2.0/2.0			10
tıн	Data/Address/Control Input hold tir	1			10	
t∟z	Data output low impedance	1			9	
tнz	Data output high impedance		5.4		8	
twr	Write Recovery Time	2				
tccd	CAS# to CAS# Delay time		1		CLK	
tMRS	Mode Register Set cycle time		2			

* CL is CAS# Latency.

Note:

1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

2. All voltages are referenced to VSS.

3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of tCK and tRC.Input signals are changed one time during tCK.

4. These parameters depend on the output loading. Specified values are obtained with the output open.

5. Power-up sequence is described in Note 11.

(Notes Continued)

6. A.C. Test Conditions

LVTTL Interface

Reference Level of Output Signals	1.4V /1.4V
Output Load	Reference to the Under Output Load
Input Signal Levels	2.4V /0.4V
Transition Time (Rise and Fall)of Input Signals	1ns
Reference Level of Input Signals	1.4V

LVTTL A.C. Test Load

- 7. Transition times are measured between VIH and VIL.Transition(rise and fall)of input signals are in a fixed slope (1 ns).
- 8. tHz defines the time in which the outputs achieve the open circuit condition and are not at reference levels.
- 9. If clock rising time is longer than 1 ns,(tR /2 -0.5)ns should be added to the parameter.
- 10. Assumed input rise and fall time tT (tR &tF)=1 ns

If tR or tF is longer than 1 ns,transient time compensation should be considered,i.e.,[(tr +tf)/2 -1]ns should be added to the parameter.

11. Power up Sequence

Power up must be performed in the following sequence.

1) Power must be applied to VDD and VDDQ(simultaneously)when all input signals are held "NOP"state and both CKE ="H"and DQM ="H."The CLK signals must be started at the same time.

2) After power-up,a pause of 200µ seconds minimum is required. Then, it is recommended that DQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance.

3) All banks must be precharged.

4) Mode Register Set command must be asserted to initialize the Mode register.

5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the device.

Timing Waveforms

Figure 1.AC Parameters for Write Timing (Burst Length=4,CAS#Latency=2)

Figure 3.Auto Refresh (CBR)(Burst Length=4,CAS#Latency=2)

Figure 4.Power on Sequene and Auto Refresh (CBR)

Figure 5.Self Refresh Entry & Exit Cycle

Note:To Enter SelfRefresh Mode

- 1. CS#,RAS#&CAS#with CKE should be low at the same clock cycle.
- 2. After 1 clock cycle, all the inputs including the system clock can be don 't care except for CKE.
- The device remains in SelfRefresh mode as long as CKE stays "low".
 Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh.

To Exit SelfRefresh Mode

- 1. System clock restart and be stable before returning CKE high.
- 2. Enable CKE and CKE should be set high for minimum time of tSRX.
- 3. CS#starts from high.
- 4. Minimum tRC is required after CKE going high to complete SelfRefresh exit.
- 5. 2048 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the system uses burst refresh.

Figure 6.2.Clock Suspension During Burst Read (Using CKE)

Note:CKE to CLK disable/enable =1 clock

(Burst Length=4,CAS#Latency=3) Т0 T 1 T 2 T 3 T 4 T5 T6 T7 Т8 Т9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK tck3 CKE CS# RAS# CAS# WE# BS0,1 A10 RA A0-A9 A RA DQM tHZ DQ Hi-Z Ax2 Ax0 Ax1 Ax3 1 f Clock Suspend Clock Suspend 1 Cycle 2 Cycle Clock Suspend 3 Cycle Read Command Bank A Activate Command Bank A

Figure 6.3.Clock Suspension During Burst Read (Using CKE)

Note:CKE to CLK disable/enable =1 clock

Figure 7.2.Clock Suspension During Burst Write (Using CKE)

(Burst Length=4,CAS#Latency=2)

Note:CKE to CLK disable/enable =1 clock

Figure 7.3. Clock Suspension During Burst Write (Using CKE)

Note:CKE to CLK disable/enable =1 clock

Figure 8.Power Down Mode and Clock Mask (Burst Lenght=4, CAS#Latency=2)

Figure 9.2.Random Column Read (Page within same Bank)

(Burst Length=4,CAS#Latency=2)

Figure 9.3.Random Column Read (Page within same Bank)

Figure 10.2.Random Column Write (Page within same Bank) (Burst Length=4,CAS#Latency=2) |T10 |T 11 |T12 |T13 |T14 |T15 |T16 |T17 |T18 |T19 |T20 |T21 |T22 T0 T2 T3 T4 T5 T6 T7 T8 T9 T 1 CLK tck2 CKE CS# RAS# CAS# WE# BS0,1 RBw RBz A10 A0-A9 СВу RBz CBz RBv CBw CBx DQM <u>Hi-Z</u> DQ DB> DBy DBy)Bz()Bz DBz)Bx ٥B)Bz DB T Write Command Bank B Activate Command Bank A Write Write Write Command Bank B Precharge Command Bank B Activate Command Bank B Command Bank B Command Bank A

Figure 11.3.Random Row Read (Interleaving Banks)

Figure 12.2.Random Row Write (Interleaving Banks)

(Burst Length=8,CAS#Latency=2)

Figure 12.3.Random Row Write (Interleaving Banks)

(Burst Length=8,CAS#Latency=3)

Figure 14.2.Interleaving Column Read Cycle (Burst Length=4,CAS#Latency=2)

Figure 15.2.Interleaved Column Write Cycle (Burst Length=4,CAS#Latency=2)

Figure 15.3.Interleaved Column Write Cycle (Burst Length=4,CAS#Latency=3)

Figure 19.3.Full Page Write Cycle (Burst Length=Full Page,CAS#Latency=3)

Figure 20.Byte Write Operation (Burst Length=4,CAS#Latency=2)

Figure 24.2. Precharge Termination of a Burst

(Burst Length=8 or Full Page,CAS#Latency=2)

Figure 24.3. Precharge Termination of a Burst

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800B-6T	400 mil TSOP-II
166 MHz	6	IS42S32800B-6TL	400 mil TSOP-II, Lead-free
166 MHz	6	IS42S32800B-6B	8 x13mm BGA
166 MHz	6	IS42S32800B-6BL	8 x13mm BGA, Lead-free
143 MHz	7	IS42S32800B-7T	400 mil TSOP-II
143 MHz	7	IS42S32800B-7TL	400 mil TSOP-II, Lead-free
143 MHz	7	IS42S32800B-7B	8 x13mm BGA
143 MHz	7	IS42S32800B-7BL	8 x13mm BGA, Lead-free

Industrial Range: -40°C to +85°C

Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32800B-6TI	400 mil TSOP-II
166 MHz	6	IS42S32800B-6TLI	400 mil TSOP-II, Lead-free
166 MHz	6	IS42S32800B-6BI	8 x13mm BGA
166 MHz	6	IS42S32800B-6BLI	8 x13mm BGA, Lead-free
143 MHz	7	IS42S32800B-7TI	400 mil TSOP-II
143 MHz	7	IS42S32800B-7TLI	400 mil TSOP-II, Lead-free
143 MHz	7	IS42S32800B-7BI	8 x13mm BGA
143 MHz	7	IS42S32800B-7BLI	8 x13mm BGA, Lead-free

IS42S32800B

Package Outline