austria**micro**systems

Power and Audio Management Unit for Portable Devices

AS3654

Specification, Confidential

1 General Description

The AS3654 is a highly integrated solution for power supply generation and monitoring, battery management including charging. It is controlled via a serial control interface and integrates all necessary system specific functions such as clock, reset and interrupt generation, voltage and temperature monitoring.

2 Key Features

System Control

- Serial Control Interface
- On/Off Control Module
- Reset Generation for system controller
- Programmable Interrupt Controller
- Low power off mode (9µA; 2.5V LDO on)

Supply Voltage Generation

- 1 RF Programmable Low Noise LDOs (400mA)
- 1 RF Programmable Low Noise LDOs (150mA)
- 2 Programmable Digital Low Power LDOs (200mA)
- 2 General Purpose PWM DC/DC step up converter with two programmable current sinks (e.g. for white led)
- 3 General Purpose high efficiency DC/DC step down converter
- 1 Low noise charge pump with 5V output voltage
- 1 Ultra Low Power 2.5V LDO (always on)

Current sinks

- 4 programmable(6-bit) from 0.625 to 40mA optional useable as GPIOs
- 3 programmable high voltage (15V) (6-bit) from 0.625 to 40mA

10-bit Successive Approximation ADC

40µs conversation time

Battery Management

- Full featured chemistry independent step down charger with included Gas Gauge and Current limitation.
- 0.15 Ω Battery switch for start-up during trickle charging
- Integrated USB charger up to 400mA

Power Management Features

- Wide Battery Supply Range 3.0...5.5V
- On-Chip Bandgap Tuning for High Accuracy (±1%)
- Current protection
- Thermal Protection with internal temperature sensor
- 0.35µm CMOS Solution

<u>Audio</u>

- Two Digital Audio Inputs (I2S interface)
- 18 Bit Audio DAC
- 2.9V low Noise LDO for Audio DAC
- Headphone Amplifier Output with GND separation
- GND Buffer for Headphone Amplifier
- Line/ Headphone output with GND separation

Programmable System clock

- 1.6 MHz to 2.3 MHz with 100 kHz steps

3 Applications

- Power and Audio Management Unit
- 1 Cell Li+ or 3 Cell NiMH powered devices
- Car Battery powered systems with and without internal battery

4 Block Diagram

Figure 1 – AS3654 Application Diagram

Document Revision History

Chapte r	REV	Description of Change	Date	Author
all	0V19	 Additional descriptions and updates Removed duplicated hp_det bit (register 58, b3) 	21.3.2006	TJE/PTR
all	0V20	Typical XON pull up current updated = 5uA, Charger external components Qpu=BSS84 Added applicationdiagramm, reformatted headings	24.11.2006	TJE/PTR
all	0V21	 Changed VDETECT minimum value to 2mV (dcdc stepup1 load detection) Updated soldering conditions 	12.1.2007	TJE/PTR
all	0V22	 Updated pwm_high_time and pwm_low_time settings Updated package thickness tolerance from +/-0.1mm to +0.1/-0.15 	17.12.2007	TJE/PTR

Index

4	Block Diagram	2
5		
	5.1 Absolute Maximum ratings (non operating)	8
	5.2 Operating Conditions	9
6	1	
7	Detailed Functional Descriptions	11
	7.1 Step Up DC/DC Converter	
	7.2 Stepup1 load detection and overcurrent protection circuit	17
	7.3 Current Sinks	19
	7.3.1 High voltage Current Sinks 40mA (CURR5, DCDC_CURR1 and DCDC_CURR2):	19
	7.3.2 Low voltage Current Sink 40mA (CURR1, CURR2, CURR3, CURR4):	20
	7.4 General Purpose Input / Output (GPIO) Pins	21
	7.4.1 High Current GPIO Pins (Same pins as Current sinks CURR14)	21
	7.5 ADC	
	7.6 Internal Battery switch (Vsupply, Battery)	25
	7.7 Step Down Charger	26
	7.8 USB Charger	27
	7.9 Battery Charge Controller	29
	7.9.1 Charge Controller Operating Modes and Building Blocks	31
	7.9.2 Fuel Gauge	
	7.9.3 Charger Operation	40
	7.10 Step Down DC/DC Converter	41
	7.10.1 Typical Performance Characteristics	45
	7.11 Low Dropout Regulators (LDO)	46
	7.11.1 RF LDO's (VRF_1 - VRF_2)	
	7.11.2 Digital LDO's (VDIG_1, VDÍG_2)	
	7.11.3 Low power LDO (V2_5)	
	7.12 5V Charge Pump	51
	7.13 Audio	53
	7.14 Common mode voltage generation of HP_CM, LINE_CM	54
	7.15 First AudioSet Register	54
	7.16 Digital Audio Input	
	7.16.1 General	55
	7.16.2 Signal Description	55
	7.16.3 Power Save Options	56
	7.16.4 Parameter	56
	7.17 Line Input	57
	7.17.1 General	57
	7.18 Headphone Output	57
	7.18.1 Phantom Ground	57
	7.18.2 No-Pop Function	58
	7.18.3 Over-current Protection	58
	7.18.4 Headphone Detection	58
	7.18.5 Power Save Options	58
	7.18.6 Register Description	60
	7.19 Line Output	61
	7.19.1 General	
	7.19.2 No-Pop Function	
	7.19.3 Power Save Options	
	7.19.4 Parameter	
	7.19.5 Register Description	
	7.20 I ² C Serial Interface	
	7.21 Reset	
	7.22 Interrupt Controller	
	7.23 Startup	
	7.23.1 Programmable Startup Sequences	
	U · · · · · · · · · · · · · · · · · · ·	

7.23	3.2 Protection Functions	72
7.23		
7.23	B.4 Internal References (V, I, f _{clk})	
	ON-Detect	
	Packaging and Pinout	
	1 Pin Description	
8.3	Registermap	81
	Pinout Drawing (Top view) CTBGA100 9x9mm:	
8.6	Package and Marking	86
	1 CABGA100_9x9mm 0.8mm pitch(AS 3654)	

List of Tables

Table 1 – Absolute Maximum Ratings	
Table 2 – Operating conditions	9
Table 3 – DC/DC Converter parameters	12
Table 4 – Step Up DC/DC Bit definitions	16
Table 5 – Step Up Registermap	17
Table 6 – StepUp1 protection/detection circuit parameters	17
Table 7 – Low voltage status Bit definitions (stpup1_det and stpup1_oc)	18
Table 8 – Step Up protection Registermap	18
Table 9 – Current Sinks Characteristics	19
Table 10 – Current Sink Bit definitions	19
Table 11 – Current Sinks Characteristics	20
Table 12 – Current Sink Bit definitions	20
Table 13 – Currentsink registermap	20
Table 14 – High Current GPIO Pin Characteristics (GPIO14)	21
Table 15 – GPIO 14 Register	21
Table 17 – GPIO Bit Register	22
Table 18 – PWM Frequency Control High Time Registers	22
Table 19 – PWM Frequency Control Low Time Registers	22
Table 20 – GPIOs Registermap	23
Table 21 –ADC Characteristics	23
Table 22 - ADC Bit definitions	24
Table 23 – ADC register map	25
Table 24 – Battery switch parameters	25
Table 25 – Battery switch status Bit definitions	
Table 26 – Battery switch Registermap	
Table 27 – Step down charger parameters	
Table 28 – Step Down Charger control	26
Table 29 – Step down charger Registermap	
Table 30 – USB-Charger Bit definitions	
Table 31 – Step down charger Registermap	28
Table 32 – Charger External Components	
Table 33 – Charger Characteristics	34
Table 34 – Charger Register Overview	35
Table 35 – Charger Status Register	
Table 36 – Charger Control1 Register	
Table 37 – Battery Voltage Monitor Register	
Table 38 – Charger Timing Register	
Table 39 – Charger Config Register	
Table 40 – Fuel Gauge parameters	

Table 41 – Fuel Gauge Register definitions	39
Table 42 – Fuel Gauge Bit definitions	
Table 43 – FG Registermap	40
Table 44 – Charge Current Regulator parameters	40
Table 45 – Charger Register map	40
Table 46 – Charger Bit definitions	40
Table 47 – Step Down DC/DC Converter parameters	43
Table 48 – Step Up DC/DC Bit definitions	
Table 49 – Step down Register map	46
Table 50 – LDO's Bit definitions	46
Table 51 – Analog LDO (VRF_1, VRF_2) Characteristics	47
Table 52 – LDO_RF Register map	
Table 53 – Digital LDO (VDIG_1, VDIG_2) Characteristics	49
Table 54 – Digital LDO (VDIG_1, VDIG_2) Programming voltage table	
Table 55 – LDO_DIG Register map	
Table 56 – Low power LDO (V2_5) Characteristics	
Table 57 – Charge Pump External Components	51
Table 58 – Charge Pump Characteristics	
Table 59 – Charge Pump Bit definitions	
Table 60 – Charge pump Register map	
Table 61 – common mode voltage, Audio start-up and PSRR	
Table 62 - AudioSet1 Register	
Table 63 - AudioSet2 Register	
Table 64 – Low voltage status Register	
Table 65 – PLL,MCLK Settings	
Table 66 - AudioDAC Parameter	
Table 67 - I2S Parameter	
Table 68 – Audio Register map	
Table 69 – Low voltage Status register bit	
Table 70 - Line Inputs Parameter	
Table 71 - Power Amplifier Parameter	
Table 72 - HPH_OUT_R Register	
Table 73 - HPH_OUT_L Register	
Table 74 – Headphone Register map	
Table 75 - Line Power-Save Options	
Table 76 - Line out Block Characteristics	
Table 77 - LINE_OUT_R Register	
Table 78 - LINE_OUT_L Register	
Table 79 – Lineout Register map	
Table 80 – I2C SDA, SCL Characteristics	
Table 81 – XRESET, XON Characteristics	
Table 82 – Reset Levels	66
Table 83 – Reset Register map	
Table 84 – Reset Bit definitions	
Table 85 – Interrupt 1 Register	
Table 86 – Interrupt 2 Register	
Table 87 – Interrupt mask 1 Register	
Table 88 – Interrupt mask 2 Register	
Table 89 – Low voltage status Register	
Table 90 – Interrupt Register map	

72
72
72
73
74
74
75
75
75
75
77
77
78
81

List of Figures

Figure 1 – Blockdiagram AS3654	10
Figure 2 – DC/DC step-up Converter 1	11
Figure 3 – DC/DC step-up Converter 2	11
Figure 4 – DC/DC step up 2 converter with regulation of LED string on pin DCDC_CURR1 or DCDC_CURR2	13
Figure 5 – DC/DC step up 1 converter with regulated output voltage of 5V. Feedback is at pin DCDC_FB1	13
Figure 6 – DC/DC step up converter 1 with regulated output voltage (15V), and switch off function of output volta	
shutdown current	
Figure 7 – ADC Timing-diagram	
Figure 8 – USB Charger Block Diagram	
Figure 9 – Charger Block Diagram with optional reverse polarity and short protection	
Figure 10 – Charger Block Diagram for voltages >15V (Protection up to 50V; minimum Vcharger voltage 8V)	30
Figure 11 – Step down charger Efficiency (Measured)	30
Figure 12 – Charger Flow Chart	32
Figure 13 – Step Down DC/DC Converter Blockdiagram	41
Figure 14 -sdX_dis_curmin=1 operation	42
Figure 15 -sdX_dis_curmin=0 operation	42
Figure 16 – DC/DC step-down Efficiency (sdX_dis_curmin=0, sdX_lpo=0)	45
Figure 17 – PCB Layout recommendation	45
Figure 18 – Analog LDO Blockdiagram	47
Figure 19 – Digital LDO Blockdiagram	49
Figure 20 – Digital LDO Blockdiagram	51
Figure 21 – Audio Blockdiagram	53
Figure 22 – I2S Timing Diagram	56
Figure 23 – I ² C Byte-Write:	64
Figure 24 – I ² C Page-Write:	64
Figure 25 – I ² C Random-Read:	64
Figure 26 – I ² C Sequential-Read:	65
Figure 27 – I ² C Current-Address-Read:	65
Figure 28 – Startup flow chart	71
Figure 29 – Watchdog timing diagram	74

5 Characteristics

5.1 Absolute Maximum ratings (non operating)

Stressed beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or beyond those under 'Operating conditions' is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Symbol	Parameter	Min	Max	Unit	Note
VIN_HV	High voltage pins	-0.3	17.0	V	Applicable for high voltage pins (1)
VIN_MV	5V pins	-0.3	7.0	V	Applicable for pins 5V-pins (2)
$V_{\text{IN}_{LV}}$	3.3V pins	-0.3	5.0	V	Applicable for 3.3V-Pins (3)
lin	Input pin current	-25	+25	mA	At 25 °C, Norm: Jedec 78
T _{strg}	Storage Temperature Range	-55	125	°C	
	Humidity	5	85	%	Noncondens.
					Norm: MIL 883 E Method 3015
VESD05	Electrostatic discharge 0.5kV	-500	500	V	Applicable for pins: LX1, LX2, LX3, VSUPPLY_1VSUPPLY_6
					Norm: MIL 883 E Method 3015
V _{ESD1}	Electrostatic discharge 1kV	-1000	1000	V	Applicable for pins: all, except the pins listed at V _{ESD05} Setup: Note(4)
Pt	Total Power Dissipation		1	W	T _A = 70 degrees
Γt			0.72	W	T _A = 85 degrees
Soldering Conditions					
TBODY	Package Body Temperature		260	°C	Norm IPC/JEDEC J-STD-020C, reflects moisture sensitivity level only
Треак	Solder Profile ⁽⁵⁾	235	245	°C	
Dwell		30	45	S	above 217 °C

Table 1 – Absolute Maximum Ratings

Notes

(1) (2)	HV pins are 5V pins are	VCHARGER, VGATE, VOFF_B, DCDC_CURR1,DCDC_CURR2 V_USB, CH_SENSE_N, CH_SENSE_P, VSUP_SW1, VSUP_SW2, VBAT_SW1, VBAT_SW2, V_BAT, SCL, SDA, XRESET, XINT, VSUPPLY_3, CURR16, DCDC_GATE1, DCDC_GATE2, DCDC_SENSE_P1, DCDCSENSE_P2, DCDC_SENSE_N1, DCDC_SENSE_N2, DCDC_FB1, DCDC_FB2, VCL, VCP_OUT, VCP_N, VCP_P, VCP_IN, VCP_IN, VRF1, VREF1_IN, VRF2, VRF2_IN, VDIG1, VDIG1_IN, VDIG2, VDIG2_IN, VSUPPLY_1, VSUPPLY_2, LX1, LX2, GND_SW, VSUPPLY_4, LINE_CM, HP_CM_PWR, HP_CM, LOUT_R, LOUT_L, ALVDD, AVDD, LSP_R, BVSS, LSP_L, AVDD, VSUPPLY_4
(3)	3.3V pins are	ISENSEP, ISENSEN, ADC_IN, RPROGRAM, V2_5, CREF, ON, VI2S, SDI, SCLK, MCLK, LRCLK, AGND, VREF, LINL,LINR, VDAC
(4)	ESD setup	Following pins connected: VSUPPLY_1VSUPPLY_6, VCP_IN, VRF1_IN, VRF2_IN, VCURR connected together VDIG1_IN,VDIG2_IN connected together AVDD, ALVDD connected together

		VBAT_SW1 and VBAT_SW2 connected together VSUP_SW1 and VSUP_SW2 connected together
(5)	Soldering	All VSS connected together austriamicrosystems strongly recommends to use underfill

5.2 Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{HV}	High Voltage	0.0		15.0	V	VCHARGER, VGATE, DCDC_CURR1,DCDC_CURR2
Vbat, VSUPPLY	Battery, Supply Voltage	3.0	3.6	5.5	V	For pins V_BAT, VSUPPLY1-6 (always connect all VSUPPLY1-6 pins together), VSUP_SW1-2, VBAT_SW1-2, VRF1_IN, VRF2_IN, VCP_IN, AVDD, ALVDD, VCURR ⁽¹⁾
V2_5	Voltage on Pin V2_5	2.4	2.5	2.6	V	Internally generated
VCP_OUT	Output Voltage charge pump	4.9	5.2	5.6	V	Voltage generated by charge pump
Тамв	Ambient Temperature	-30	25	85	deg.	
ILOWPOWER	Low power mode current consumption		7		mA	Current consumption in low power mode with step down charger on ⁽²⁾
			200		μA	With step down charger off ⁽³⁾
I _{PowerOff}	Power Off mode current consumption		16		μA	Current consumption in power off mode ⁽⁴⁾

Notes

During startup from the AC/DC adapter, the battery voltage can be below 3.0V (1)

with register bit low_power_on = 1, only Rf1=3.3V,Vout2=1.2V,Battery 3.6V,Vcharger=6.0V, no additional external loads with register bit low_power_on = 0, All regulators switched off, no additional external loads (2)

- (3) (4)
- after setting register bit xon_enable=1 and power_off=1; only V2_5 is active in Power Off mode

6 General Description

Figure 2 – Blockdiagram AS3654

7 Detailed Functional Descriptions

7.1 Step Up DC/DC Converter

Figure 3 – DC/DC step-up Converter 1

Figure 4 – DC/DC step-up Converter 2

Symbol	Parameter	Min	ТҮР	Мах	Unit	Note
I _{VDD}	Quiescent Current		140		μA	Pulse skipping mode
V _{FB1}	Feedback voltage for external resistor divider:	1.20	1.25	1.30	V	for constant voltage control
V _{FB2}	Feedback voltage for current sink regulation		0.5		V	DCDC_CURR1 or DCDC_CURR2
IDCDC_FB	Additional tuning current at DCDC_FB	0		15	μΑ	adjustable by software in 1µA steps
	Accuracy of feedback current	-4		4	%	@ full scale
$V_{\text{rsense}_\text{max}}$	Current limit voltage at Rsense		100		mV	(e.g.: 0.65A for 0.15 Ω sense resistor
Rsw	switch resistance			1	Ω	ON-resistance of external switching transistor
lload	Load current	0		50	mA	at 15V output voltage
f _{IN}	Switching frequency		f _{clk_int} /2		MHz	internal CLK frequency/2 Programmable: 0.8 to 1.15 MHz
Cout	Output capacitor		2.2		μF	ceramic, ±20%
L	Inductor		10		μН	Use inductors with small C _{parasitic} (<100pF) to get high efficiency
t _{MIN_ON}	Minimum on time		130		ns	
MDC	Maximum duty cycle		91		%	

Table 3 – DC/DC Converter parameters

DC/DC Step Up converter is a high efficiency current mode PWM regulator, which provides an output voltage up to 20V and a load current up to 50mA . A constant switching frequency results in a low noise on supply and output voltage.

Feedback selection

For step up DCDC 1, the feedback is always DCDC_FB1.

For step up DCDC 2 following feedback selections are possible: Stpup2_fb selects the type of feedback for the DCDC_step_up2 converter: DCDC_CURR1, DCDC_CURR2 or DCDC_FB2 feedback (see Fig.3)

Setting stpup2_fb to 00b enables the feedback on DCDC_FB2, stpup2_fb to 01b enables feedback at pin DCDC_CURR1, setting step_up_fb to 10b enables feedback at pin DCDC_CURR2. The Step-up converter is regulated such that the required current at the feedback path can be supported.

Always choose the path with the higher voltage drop as feedback to guarantee adequate supply for the other, unregulated path.

To protect the DCDC output voltage against overvoltage, if a LED string is broken, set stpup2_prot=1. In this mode the output voltage will be limited by limiting the DCDC_FB voltage to 1.25V (select the external resistor network to adjust this limitation voltage).

Figure 5 – DC/DC step up 2 converter with regulation of LED string on pin DCDC_CURR1 or DCDC_CURR2

Figure 6 – DC/DC step up 1 converter with regulated output voltage of 5V. Feedback is at pin DCDC_FB1

Voltage Feedback : (see Fig.5)

For Step UP DCDC 1 voltage feedback is always selected on pin DCDC_FB1. For Steup UP DCDC 2 set step2_fb to 00 to enable voltage feedbback at pin DCDC_FB2.

Bit stepX_res (X = 1 or 2) should be set to 1 in voltage feedback mode using two resistors.

The output voltage is regulated to a constant value, given by:

$$V_{stepup_out} = \frac{R_1 + R_2}{R_2} 1.25 + I_{I_{DCDC_FB}} \bullet R_1$$

If R2 is not used, the output voltage is:

$$V_{stepup_out} = 1.25 + I_{I_{DCDC_FB}} \bullet R_1$$

$V_{{\it stepup_out}}$	Step up regulator output voltage
R_1	Feedback resistor R1
R_2	Feedback resistor R2
$I_{_{Vtuning}}$	Tuning current on DCDC_FB pin: stpupX_v (0 μ A to 15 μ A (1 μ A steps)) (X= 1 or 2)

Examples:

I _{vtuning}	V _{stepup_out}	V _{stepup_out}
μA	R1=1MΩ,R2 not used	R1=500kΩ,R2=64kΩ
0	-	11
1	-	11.5
2	-	12
3	-	12.5
4	-	13
5	6.25	13.5
6	7.25	14
7	8.25	14.5
8	9.25	15
9	10.25	15.5
10	11.25	16
11	12.25	16.5
12	13.25	17
13	14.25	17.5
14	15.25	18
15	16.25	18.5

Note: The voltage on pin DCDC_CURR1 and DCDC_CURR2 must never exceed 15V

Figure 7 – DC/DC step up converter 1 with regulated output voltage (15V), and switch off function of output voltage, to reduce shutdown current

As the output voltage is always on, an additional output transistor can be added to reduce shutdown current through R1, R2 and the connected output circuit.

Note: A similar circuit can be used for step up converter 2.

Name	Defau It	Access	Description			
stpupX_on	ROM	R/W	On/Off control of the step up dc/dc converter; (X=1 or 2)			
stpupX_clkinv	ROM	R/W	Invert input clock of step up converter;(X=1 or 2)0Use positive edge of internal clk1Use negative edge of internal clk			
stpup2_fb	ROM	R/W	Controls the feedback source 00 DCDC_FB enabled (external resistor divider) 01 DCDC_CURR1 feedback enabled (feedback through white LEDs) 10 DCDC_CURR2 feedback enabled (feedback through white LEDs) 11 reserved (don't use)			
stpupX_freq	ROM	R/W	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
stpupX_v	ROM	R/W	Defines the tuning current at DCDC_fb pin; (X=1 or 2) 0000 0 μA 0001 1 μA 1111 15 μA			
stpupX_res	ROM	R/W	Gain selection for DCDC step_up: (X=1 or 2) 0 Select 0 if DCDC is used with current feedback (DCDC_CURR1,DCDC_CURR2) or if DCDC_FB is used with current feedback only (Only R1,C1 connected; see Fig.6) 1 Select 1 if DCDC_FB1 or DCDC_FB2 is used with external resistor divider (2			
stpupX_fastskip	ROM	RW	resistors) DCDC converter output voltage at low loads, when pulse skipping is active: ; X=1 or 2 0: accurate output voltage, higher ripple (normal operation) 1: elevated output voltage, less ripple			
stpup2_prot	ROM	RW	 DCDC converter 2 overvoltage protection to prevent damage of external NFET, if DCDC_CURR1 or DCDC_CURR2 feedback selected, and no LED string connected: 0: Overvoltage protection disabled. 1: Switch off DCDC step up 2 if the voltage on DCDC_FB2 exceeds 1.25V 			
stpup1_shortpro t	ROM	RW	Enables Protection and Detection circuit for DCDC step up1 – see next section 0: No protection and load detection 1: Short protection and load detection enabled			
stpup1_oc_time out	ROM	RW	Controls GPIOx switch off, after overcurrent timeout (5ms) for DCDC step up 1 0: disabled 1: enabled			

Table 4 – Step Up DC/DC Bit definitions

Register Definition	Add	Default	Content							
Name	r .1	Delduit	b7	b6	b5	b4	b3	b2	b1	b0
Step Up DC/DC Control	15	ROM (00h)	stpup2_r es	stpup2_f astskip	stpup2_f req		stpup1_r es	stpup1_f astskip	stpup1_f req	
Step Up1 DC/DC Control	16	ROM (00h)		stpup1_ oc_time out	stpup1_ shortpro t	stpup1_ clkinv		stpup1_v		
Step Up2 DC/DC Control	17	ROM (00h)	stpup2_ prot	stpup2_ clkinv	stpup2_fb			stpu	p2_v	
Reg Power2 Ctrl	31	ROM					stpup2_ on	stpup1_ on	rf2_sw	rf1_sw

Table 5 – Step Up Registermap

7.2 Stepup1 load detection and overcurrent protection circuit

This circuit protects the DCDC step up1 converter during short circuit and startup, by regulation of the output current. An additional feature is the detection of a minimum output load of the StepUp converter. It is also possible to use this circuit without the DCDC step up converter, by using the sense resistor only:

Detection circuit

If the voltage on R_{sense} exceeds V_{DETECT} for more than 1msecond, or the DCDC Step up converter is not in Pulseskip for more than 1 msecond, the stepup1_det bit will be set.

Overcurrent protection

If the Overcurrent voltage $V_{OVCURRENT}$ has been exceeded by more than 5 msec the Bit stpup1_oc will be set and can only reset, by switching off and on the Protection circuit by writing Stpup1_shortprot 0 – 1. If stepup1_oc is set the load will be disconnected, if Stpup1_oc timeout=1

Symbol	Parameter	Min	TYP	Мах	Unit	Note
VDETECT	Detection Threshold	2	12.5	20	mV	For Rsense=0.1500hm => 83mA typ.
Vovcurrent	NT Overcurrent Threshold rising		180	215	mV	For Rsense=0.1500hm => 1.2A typ.
Vovhysteresis	Overcurrent Hysteresis		50		mV	
tov_timeout	Overcurrent timeout		5		ms	Interrupt and/or external PMOS switching off after timeout f_{clk_int} = 2.2MHz
t _{detect}	Detection denounce time		1		ms	f _{clk_int} = 2.2MHz

Table 6 – StepUp1 protection/detection circuit parameters

¹ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Table 7 – Low voltage status Bit definitions (stpup1_det and stpup1_oc)

Name	Defau It	Access	Description
stpup1_det	NA	R	Step up detection status register 0 V _{Rsense} < V _{DETECT} for more than 1msecond, and DCDC Step up converter is in Pulseskip for more than 1 msecond 1 V _{Rsense} > V _{DETECT} for more than 1msecond, or the DCDC Step up converter is not in Pulseskip for more than 1 msecond
stpup1_oc	NA	R	Step up overcurrent status bit 0 V _{Rsense} < V _{OVCURRENT} 1 V _{Rsense} > V _{OVCURRENT} for more than 5 msec (latched state)

 Table 8 – Step Up protection Registermap

Register Definition	Add	Default	Content								
Name	r.²	Deldan	b7	b6	b5	b4	b3	b2	b1	b0	
Low voltage Status	47	40h	stpup1_ det	stpup1_ oc	hpdet	dig2_lv	dig1_lv	sd3_lv	sd2_lv	sd1_lv	

² Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.3 Current Sinks

These are general-purpose current sinks intended to control the backlight(s), buzzer and vibrator. The low voltage current sink has an integrated protection against over voltage and can therefore also drive inductive loads (VPROTECT).

DCDC_CURR1 and DCDC_CURR2, CURR5 are high voltage (15V) current sinks, e.g. for series of white LEDs CURR1,CURR2, CURR3, CURR4 are four 5V, 40mA current sinks, e.g. for buzzer, vibrator, LEDs

CURR1, CURR2, CURR3, CURR4 can be used as general propose Input/Output (GPIO) functions optional

7.3.1 High voltage Current Sinks 40mA (CURR5, DCDC_CURR1 and DCDC_CURR2):

Current sinks CURR5 DCDC_CURR1 and DCDC_CURR2 can be controlled individually. The step-up DCDC converter may supply them with voltages up to15V.

Symbol	Parameter	Min	Тур	Мах	Unit	Note
IDCDC_Curr1,2,5	DCDC_CURR1,2 and CURR5 current, 00h-3Fh	0		40	mA	For V(CURRx) > 0.45V resolution = 0.625mA
IDCDC_protect	Current sink protection Current		2		μΑ	Protection Current if stpup2_on=1 and dcdc_currx_current=00h
Δ	absolute Accuracy	-20%		+20%		All Current sinks
V _{DCDC_Curr1} , V _{DCDC_Curr2}	Voltage compliance	0.45		15	V	during normal operation

Table 9 – Current Sinks Characteristics

Table 10 – Current Sink Bit definitions

Name	Default	Access	Description
dcdc_currX_curre nt, curr5_current	(00)h	R/W	Defines the current into DCDC_CURRX (X = 14) 00h power down (default state) 01h 0.625mA 3Fh 39.375mA
dcdc_currX_low_ bias, curr5_low_bias	0b	R/W	 Reduces bias current by 2 0 Normal current (LSB=0.625mA, max current= 39.375mA) 1 Current reduction by 2 (LSB=0.3125mA, max current= 19.687mA)
dcdc_currX_ctrl, curr5_ctrl	00b	R/W	On/Off control of the pad DCDC_CURR1,2 and CURR5 00 Pad is turned off 01 Pad is active 1X don't use

7.3.2 Low voltage Current Sink 40mA (CURR1, CURR2, CURR3, CURR4):

Curr1, Curr2, Curr3, Curr4 can be controlled individually. Each one can sink up to 40mA.

Table	11 –	Current	Sinks	Characteristics
-------	------	---------	-------	------------------------

Symbol	Parameter	Min	Тур	Мах	Unit	Note
						For V(CURRx) > 0.2V
ICURR1,2,3,4 Curr1,2,3,4 cur	Curr1,2,3,4 current, 00h-1Fh	0		40	mA	resolution = 0.625mA, each current sink
Δ	absolute Accuracy	-20%		+20%		All Current sinks
Volume	Voltage compliance	0.2		Vcurr.	V	during normal operation,
VCurr1,2,3,4	voltage compliance	0.2		vour.	V	New pin will be added

Table 12 - Current Sink Bit definitions

Name	Default	Access	Description
		Defines the current into CURRX (X = 14), if Register <i>GPIOXmode=011b or 100b</i>	
currX_current	(00)h	R/W	00h power down (default state) 01h 0.625mA
			3Fh 39.375mA
			Reduces bias current by 2 for CURRX (X = 14)
currX_low_bias	Ob	R/W	 0 Normal current (LSB=0.625mA, max current= 39.375mA) 1 Current reduction by 2 (LSB=0.3125mA, max current= 19.687mA)

Table 13 – Currentsink registermap

Register Definition	Add	Default	Content							
Name	r.³	Deldun	b7	b6	b5	b4 b3 b2 b1				b0
DCDC_CURR1 value	35	00h		dcdc_cu rr1_low_ bias	dcdc_curr1_current					
DCDC_CURR2 value	36	00h		dcdc_cu rr2_low_ bias	dcdc_curr2_current					
CURR1 value	37	00h		curr1_lo w_bias			curr1_	current		
CURR2 value	38	00h		curr2_lo w_bias			curr2_	current		
CURR3 value	39	00h		curr3_lo w_bias	curr3_current					
CURR4 value	40	00h		curr4_lo w_bias	curr4_current					

³ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Register Definition	Add	Default	Content b7 b6 b5 b4 b3 b2 b1 b0							
Name	r. ³	Deldan								
CURR5 value	41	00h		curr5_lo w_bias	curr5_current					
CURR control	51	00h			curr5_ctrl dcdc_curr2_ctrl dcdc_curr1_ctrl					urr1_ctrl

7.4 General Purpose Input / Output (GPIO) Pins

7.4.1 High Current GPIO Pins (Same pins as Current sinks CURR1...4)

The device contains 4 high current GPIO pins, which using the same pins CURR1...4, that are capable of sinking 100mA from any supply or VSUPPLY voltage. Each of the pins can be configured as open drain NMOS or push-pull output with VCURR high levels, as high impedance output or as digital input. When configured as output the output source can be a register bit, or the PWM generator, furthermore the output signal can be inverted. Integrated active clamp circuits can be enabled for the open drain NMOS output mode by setting *GPIOxPulls*=11b, thus allowing to use the high current GPIO pins for driving inductive loads. A pull-up resistor to VCURR can be enabled for the open drain NMOS output mode by setting *GPIOxPulls*=10b. When configured as digital input the logic level (*GPIOxInvert=*'0') or the inverted logic level (*GPIOxInvert=*'1') of the pin is reflected by bit *GPIOxBit* in the *GPIO Bit* register. Moreover, a special function can be selected for each digital input pin and a pull-up resistor to VCURR or a pull-down resistor can be enabled.

Symbol	Parameter	Min	Тур	Max	Unit	Note
VGPIOMAX	Maximum voltage on GPIO14 pins			V _{Vcurr.} +0.3	V	
Volh	Low level output voltage switch mode	-0.3		+0.35	V	I _{OL} =+100mA; digital output (GPIOxMode=100b and currentx=3Fh)
Vol	Low level output voltage	-0.3		+0.4	V	l _{oL} =+1mA; digital output (GPIOxMode=000b 010b)
Vон	High level output voltage	0.8 Vvcurr.		V _{Vcurr} .	V	I _{OH} =–1mA; digital push-pull output
VIL	Low level input voltage	-0.3		0.4	V	digital input
VIH	High level input voltage	1.3		V _{Vcurr.}	V	digital input
ILEAKAGE	Leakage current			10	μA	high impedance
$R_{pull-up}$	Pull-up resistance		78		kΩ	<i>GPIOxMode</i> =x0b; <i>GPIOxPulls</i> =10b; VCURR=3.6V
R _{pull-down}	Pull-down resistance		161		kΩ	digital input; <i>GPIOxPulls</i> =01b; VCURR=3.6V

Table	14 – Hi	igh Currei	nt GPIO	Pin Characteristics (GPI014)
17	-20		_ 00	7000 unless all services are sified

Table 15 – GPIO 1...4 Register R/W access;

Bit	Symbol	Default	Description
20	GPIOxMode	ROM	000b digital open drain NMOS output 001b digital push-pull output 010b digital input 011b digital open drain current sink operation Current defined by CURRx_current 100b digital open drain switch operation On resistance defined by CURRx_current101b to 111b high impedance (

Bit	Symbol	Default	Description
43	GPIOxIOSF		 00b input / output signal is written to or set by <i>GPIOxBit</i> in the <i>GPIO Bit</i> register 01b PWM (O) / WDOG (I) if used for PWM, pwm_h_time and pwm_I_time define the high and low time of this output 10b Protection of DCDC stepUp1 GPIO X (O) 11b NA
5	GPIOxInvert		 normal polarity of input / output signal inverted polarity of input / output signal
76	GPIOxPulls		00b no pull-up or pull-down resistor is enabled in all modes01b pull-down resistor is enabled in digital input mode (clamp disabled)10b pull-up resistor is enabled for <i>GPIOxMode</i> =000b,010b,011b,100b (clamp disabled)11b enable active clamp circuit for <i>GPIOxMode</i> =000b,010b,011b,100b (pull-up/down disabled)

Table 17 – GPIO Bit Register

Address 58; R/W access; register is reset at power-on-reset only and at each reset cycle.

Bit	Symbol	Default	Description
0	GPIO1	0	This bit determines the output signal of the GPIO1 pin when selected as output source
1	GPIO2	0	This bit determines the output signal of the GPIO2 pin when selected as output source
2	GPIO3	0	This bit determines the output signal of the GPIO3 pin when selected as output source
3	GPIO4	0	This bit determines the output signal of the GPIO4 pin when selected as output source
4	GPIO1_in	NA	This bit reflects the logic level of the GPIO1 pin when configured as digital input pin
5	GPIO2_in	NA	This bit reflects the logic level of the GPIO2 pin when configured as digital input pin
6	GPIO3_in	NA	This bit reflects the logic level of the GPIO3 pin when configured as digital input pin
7	GPIO4_in	NA	This bit reflects the logic level of the GPIO4 pin when configured as digital input pin

 Table 18 – PWM Frequency Control High Time Registers

Address 49; R/W access; register is reset at power-on-reset only and at each reset cycle.

Bit	Symbol	Default	Description
7-0	pwm_h_time	00h	This bit defines the high time of the pwm generator in 2/fclk_int units 0 = 2/ fclk_int 1 = 3/ fclk_int 2 = 4/ fclk_int FFh = 257/ fclk_int

 Table 19 – PWM Frequency Control Low Time Registers

Address 49; R/W access; register is reset at power-on-reset only and at each reset cycle.

Bit	Symbol	Default	Description
7-0	pwm_l_time	00h	This bit defines the low time of the pwm generator in 2/fclk_int units 0 = 2/ fclk_int 1 = 3/ fclk_int 2 = 4/ fclk_int FFh = 257/ fclk_int

The following settings are not allowed: pwm_h_time - pwm_l_time = 1 or pwm_h_time - pwm_l_time = -1

Table 20 - Grios Registerinap											
Register Definition	Add	Default	Content								
Name	r.4	Delduit	b7	b6	b5	b4	b3	b2	b1	b0	
GPIO 1	18	ROM (07h)	gpio1	_pulls	gpio1_in vert	gpio1	_iosf	psf gpio1_mode			
GPIO 2	19	ROM (07h)	gpio2	gpio2_pulls		gpio2_iosf		gpio2_mode			
GPIO 3	20	ROM (07h)	gpio3	_pulls	gpio3_in vert	gpio3	gpio3_iosf		gpio3_mode		
GPIO 4	21	ROM (07h)	gpio4	_pulls	gpio4_in vert	gpio4	_iosf		gpio4_mode		
GPIO Signal	48	NA	gpio4_in	gpio3_in	gpio2_in	gpio1_in	gpio4	gpio3	gpio2	gpio1	
PWM Frequency Control High Time	49	00h	pwm_h_time								
PWM Frequency Control Low Time	50	00h				pwm_	I_time				

Table 20 – GPIOs Registermap

7.5 ADC

Table 21 – ADC Characteristics

Parameter	Symbol	Min	Тур	Мах	Unit	Note
Resolution		10			Bit	
Input Voltage Range	Vin	0		1.8	V	
Differential Nonlinearity	DNL		± 0.25		LSB	1LSB ≈ 1.76mV
Integral Nonlinearity	INL		± 0.5		LSB	
Input Offset Voltage	Vos		2		LSB	
Input Impedance	Rin	100			Mohms	
Input Capacitance	Cin			9	pF	
Power Supply Current	ldd		500		μA	During conversion only
Power Down Current	ldd		100		NA	
		Transient F	arameter	s (25°C)		
Conversion Time	Tc		40		μs	
Clock Frequency	fc		f _{clk_int} /8		kHz	internal CLK frequency/8 Programmable: 0.2 to 0.2875 MHz
Settling time of S&H	ts	1			μs	
ADC_IN pull up current		14.25	15	15.75	μΑ	Pull up current, if adc_idc=1111b

⁴ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Table 22 - ADC Bit definitions

Name	Default	Access	Description
start_conversion	0b	W	Writing a 1 into this bit starts one ADC conversion.
adc_on	0b	R/W	Writing a 1 into this bit activates the ADC and the input multiplexer. The ADC and the MUX are also activated for a conversion period when start_conversion is set to '1'
adc_select	000b	R/W	Selects an ADC channel 000 ADC_IN (LSB = 1.76mV) 001 not used 010 VBAT (Battery voltage divided by 3) (LSB=5.27mV) 011 Vcharger (Charger voltage divided by 10) (LSB=17. 6mV) clamping at 10V! 100 USB Voltage (USB voltage divided by 3) (LSB=5.27mV) 101 not used 110 vtemp (temperature sensor output voltage) (LSB=1.76mV) 111 ADC test channel
adc_idac	000b	R/W	Current source at ADC_IN input 0000 0μA 0001 1μA 1111 15 μA
adc_test	0b	R/W	always 0, don't change
adc_slow	0b	R/W	select ADC sampling frequency 0 275kHz (conversion time: 60us) 1 70kHz (conversion time: 240us)
result_not_ready	NA	R	Indicates end of conversion 0 result is ready 1 conversion is running
D0 - D9	NA	R	ADC result register

Figure 8 – ADC Timing-diagram

Register Definition	Add	Default	Content							
Name	r .5	Deladit	b7	b6	b5	b4	b3	b2	b1	b0
ADC_control	63	00h	start_co nversion	adc_on		adc_slo w	adc_test		adc_select	
ADC_MSB result	64	NA	result_not _ready	D9	D8	D7	D6	D5	D4	D3
ADC_LSB result	65	NA						D2	D1	D0
ADC Idac	42	00h						adc_	_idac	

Table 23 – ADC register map

7.6 Internal Battery switch (Vsupply, Battery)

The internal Battery switch enables normal operation of the System during trickle charging of a deeply discharged battery. The Switch provides the following functions:

- Trickle charging, if Vbattery is smaller than ResVolt. The current is defined in TrickleCurrent[1:0]
 PMOS is switched on if Vbattery is greater then ResVolt.
- Current limitation during tricklecharge, to avoid inrush current : Itrickle_llimit
- Undervoltage protection of Vsupply during trickle charge. The trickle current is switched of , if Vsupply drops below Vtrickleoff
- Ideal diode operation in Isolate Battery mode and disable charging mode, if charger is unplugged. This operation is for the internal battery switch only. External battery switch is open in that mode. Regulation will start, if the VSUPPLY voltage drops by more then V_{Diode} below the VBattery voltage

Symbol	Parameter	Min	TYP	Мах	Unit	Note
VSupply	Input voltage	3.0		5.5	V	PIN VSUP_SW1,VSUP_SW2
Itrickle_limit	Trickle current limit		400		mA	
V _{Diode}	Ideal Diode start voltage		50		mV	
Vtrickleoff	Vsupply threshold for trickle enable	-6%	3.9	3%	V	Trickle current will be switched of, if vsupply drops below this level
Rsw	P-Switch ON resistance		0.15		Ω	VSUP_SW=3.6V

Table 24 – Battery switch parameters

Table 25 - Battery switch status Bit definitions

Name	Defau It	Access	Description
batsw_mode		R	 Trickle charging, if batsw_on=1. External PMOS switch disabled Switch on Battery switch, if batsw_on=1. External PMOS switch enabled.
batsw_on		R	 0 Battery switch off 1 Battery switch on (Mode defined by batsw_mode)

⁵ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Table 26 – Battery switch Registermap

Register Definition	Add	Default	Content							
Name	r.6	Deldan	b7	b6	b5	b4	b3	b2	b1	b0
ChargerStatus_usb	67	NA					batsw_o n	batsw_ mode	USB_C hAct	USB_Ch Det

7.7 Step Down Charger

The battery charge controller controls the Step Down charger.

During Trickle charge of the deeply discharged battery the step down converter regulates the Vsupply to Vchlimit.

If the Vbattery voltage exceeds ResVoltRise, the internal battery switch is switched on, the Vsupply voltage drops down to Vbattery immediately, and the step down converter operates as controlled current source to Vsupply. The battery current is regulated to the value defined in ConstantCurrent register.

In EOC operation (see section Battery Charge Controller), the operation of the step down charger depends on the bit isolate_battery:

If isolate_battery = 1 and EOC the output is regulated to Vchlimit.

If isolate_battery = 0 and EOC the output is not allowed to drop below VEOC (3.6V).

Symbol	Parameter	Min	ТҮР	Max	Unit	Note
Vchlimit	Voltage limit of Step down (if not in current limitation mode)	-3%	ch_vol tage	3%	V	Vsupply voltage
V _{rsense_max}	Current limit voltage at Rsense	70	100	130	mV	(e.g.: 1.4A for 0.07Ω sense resistor typ.)
Cout	Output capacitor	20		60	μF	X7R ceramic
L	Inductor		10/22		μH	See table 32 – Charger External Components
Itrickle_limit	Trickle current limit		400		mA	

Table 28 – Step Down Charger control

Address; R/W access; register is reset at power-on-reset only. Default value after reset: 00h.

Bit	Symbol	Default	Description			
0	sdc_frequ	0	 fclk_int/4 (use as default, if Vcharger>6V) fclk_int/8 (use as default, if Vcharger<6V) 			

Table 29 – Step down charger Registermap

Register Definition	Add	Default	Content							
Name	r. ⁷	Doludit	b7	b6	b5	b4	b3	b2	b1	b0

⁶ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

⁷ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

Register Definition	Add	Default	Content							
Name	r. ⁷	Delduit	b7	b6	b5	b4	b3	b2	b1	b0
Step down charger control	34	00h		sd3_dis _curmin	sd2_dis _curmin	sd1_dis _curmin				sdc_freq u

7.8 USB Charger

The AS3654 serves an integrated USB charger for Li+ batteres. The USB Charger is a current and voltage limited charger, which can be used to charge Li+ batteries directly from the USB supply. The voltage limit is set by the register ChVoltEOC (3.9V – 4.25V in 50mV steps; identical for USB charger and step down charger) and the current limit is set by the register usb_current (50mA to 400mA in 50mA steps).

For USB charging, it is recommended to start with a current limit of 100mA and after negotiates via the USB bus (this has to be done by e.g. the uProcessor directly) a different current setting can be set to speed up charging (e.g. 400mA). If Bit usb_chgEn=1 in the Boot ROM is set, VSUPPLY can start up with USB supply allowing startup from the USB supply.

If ChEn=1 and chdet=1 and usb_prio=0 the usb_charger will be deactivated automatically. (The Battery charger overrides the USB charger). If usb_prio=1, both chargers (usb charger and step down charger) can operate in parallel (the voltage on VSUPPLY is always defined by the higher voltage of the two chargers).

End of charge of the USB charger is reached, if the current through the USB charger falls below 25mA. Please note that this current includes the added current to the battery and the system. If the current to the system is too high, the end of charge condition should be detected by measuring the current through the battery with the fuel gauge. After this detection, the no_charging bit should be set. Then the voltage on the battery should be monitored by the ADC to restart the charger if the voltage on VBAT drops and a new charging cycle should be triggered.

Name	Defau It	Access	Description
no_charging	ROM (1b)		 Normal battery charger operation (usb charger and/or step down charger) USB and Step down charger is supplying VSUPPLY, but battery switch is open USB charger regulates to ChVoltEOC voltage. Step down charger regulates to ch_voltage
usb_ChargerCurren	nt –		
usb_Current	ROM (001b)	R/W	Sets the USB current. (000)b 50mA (001)b 100mA (default) (010)b 150mA (011)b 200mA (100)b 250mA (101)b 300mA (111)b 350mA (111)b 400mA
usb_prio	ROM (0b)	R/W	Sets the USB charger priority 0 USB charging possible if Chdet=0 only (battery step down charger is off) default 1 USB charging possible with both charger on
usb_chgEn	ROM (1b)	R/W	ON/OFF control of USB charger
USB_Chact		R	set to 1 if charger is active
USB_Chdet		R	Set to 1 if charger is detected

Table 31 – Step down charger Registermap

Register Definition	Add	Default	Content	Content								
Name	r.8		b7	b6	b5	b4	b3	b2	b1	b0		
USB ChargerControl	07	ROM (52h)	ext_bats w_en	No_char ging	usb_prio	usb_chg En	usb_Current					
ChargerStatus_usb	67	NA					batsw_o n	batsw_ mode	USB_C hAct	USB_Ch Det		

Charger Detection:

The Charger will be detected by comparison of the V_USB voltage with the Vsupply voltage. If V_USB is 50mV higher than VSupply voltage, the USB_ChDet is set to 1.

⁸ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.9 Battery Charge Controller

The AS3654 device serves as a standalone battery charge controller supporting rechargeable lithium ion (Li+) and nickel metal hydride (NiMH) batteries. Requiring only a few external components, a full-featured battery charger with a high degree of flexibility can easily be realised. The main features of the controller are:

- Charge adapter detection
- Charging of deeply discharged batteries
- Low current (trickle) charging with 60min timeout
- Real constant current charging by regulation of the battery current instead of the charge current
- Fast charging
- 2 different top-off charging modes: Pulse charging and constant voltage charging
- Fuel gauge enables highly accurate remaining capacity estimation of the battery
- Overvoltage protection for charge adapter input and main battery
- Battery presence indication
- Operation without battery
- Reverse polarity and short protection

Figure 10 – Charger Block Diagram with optional reverse polarity and short protection

Figure 11 – Charger Block Diagram for voltages >15V (Protection up to 50V; minimum Vcharger voltage 8V)

Symbo I	Component	Value	Note
Q _{chg}	P-channel MOSFET	Si1403 or FDC642P or similar	
Qpu	P-channel MOSFET	BSS84 or FDG312P or similar	
R _{pup1}	Pull-up resistor1	$2k\Omega \pm 5\%$	
	Pull-up resistor2	100Ω ± 5%	for Qpu=BSS138
R _{pup2}	Full-up resistorz	$50\Omega \pm 5\%$	for Qpu=FDG312P
1.	Inductor for charging	10µH	5V or 6V Vcharger input
L _{chg}		22uH	12V Vcharger input
Dchg	Diode	Tbd	
Rchg	Current sense resistor charger	70mΩ ± 5%, 125mW	e.g. Vishay Dale WSL0805 series
Rsense	Current sense resistor	$50m\Omega \pm 1\%$, 125mW for I _{VBAT,DC} <1.5A	e.g. Vishay Dale WSL0805 series
Rfilt1,2	Filter resistor	4.7kΩ ± 1%	Can be omitted if fuel gauge and
C _{filt}	Filter capacitor	1µF ± 20%, X5R or X7R dielectric	charger functionality is not used
Cchrg	Bypass capacitor on charger pin	1µF ± 20%, X5R or X7R dielectric + 22uF ± 20%, Tantal dielectric	
C _{bat}	Minimum total capacitance parallel to Vsupply	22μ F \pm 20%, X5R or X7R dielectric 47μ F \pm 20%, X5R or X7R dielectric	10 μH inductor 22 μH inductor

Figure 12 – Step down charger Efficiency (Measured)

VSupply=4.4V

7.9.1 Charge Controller Operating Modes and Building Blocks

Charge adapter detection

The charge controller uses an integrated detection circuit to determine if an external charge adapter has been applied to the VCHARGER or V_USB pin. If the adapter voltage exceeds the supply voltage at pin V_SUPPLY5 by V_{CHDET} the *ChDet or USB_CHDet* bit in the *Charger Status* register will be set. The detection circuit will reset the charge controller (*ChDet* or USB_CHDet is cleared) as soon as the voltage at the VCHARGER or USB_CHDet pin drops to only V_{CHMIN} above the battery voltage. In case the AS3654 device is reset the charge controller will also be reset, even if a charge adapter is applied to the VCHARGER or V_USB pin.

Charging deeply discharged batteries

To be able to charge even completely discharged batteries the AS3654 device contains an internal voltage regulator that uses the voltage of the external charge adapter at pin VCHARGER or V_USB to generate a bootstrap voltage $V_{2.5V}$ to supply the internal circuitry necessary for charging. As soon as the battery voltage exceeds 2.5V, the bootstrap regulator is disabled and the battery voltage will be used to generate the internal supply voltage to supply the charger circuitry.

Low current (trickle) charging

Trickle charge mode is started when an external charge adapter has been detected and ChEn or usb_chgEn is set, and the battery voltage at pin V_BAT is below the ResVoltRise threshold V_{RESRISE}.; The Battery switch is open in that case (batsw_on=1 batsw_mode=0). Bits *ChAct* and/or USBChAct and *Trickle* will be set in the *Charger Status* registers. In this mode the charge current into the battery will be limited to *TrickleCurrent* (set in the *Charger Current* register) by the battery switch to prevent undue stress on either the battery or any of the charger components in case of deeply discharged batteries. if Vsupply drops below V_{trickleoff} threshold the trickle current is regulated down, to keep the Vsupply voltage up, even with an current limited charger (e.g.:USB charger). Once V_{RESRISE} has been exceeded, the battery switch will be closed and the charge controller will proceed to constant current charge mode. The Vsupply voltage of the step down charger will be set to Vcurr_preset to prevent undervoltage on vsupply during the transition between Trickle and constant current charging. (*Trickle* is cleared). In case the battery voltage does not exceed V_{RESRISE} within t_{TRICKLE,MAX} after charging has been started, trickle_tmax interrupt will be generated and trickle charging will be stopped. Trickle charging can be started again by writing trickle_tmax=0 in the charger_control1 register.

Constant current charging

Constant current charging is initiated by setting bit *ChEn and/or USBChEn* in the *Charger Control* register, and resetting the No_charging bit. Note that *ChEn* and/or USBChEn should be set by default to enable operation of the device without a battery connected to the system. The *ChAct and/or USBChAct* bit is set when the charger has started, and the charge current into the battery will be limited to *ConstantCurrent* (set in the *Charger Current* register) by the battery charge controller. When the battery approaches full charge, its instantaneous voltage will exceed the charge termination threshold V_{CHOFF}. V_{CHOFF} depends on the battery chemistry selected by bit *BatType* and on the *ChVoltEOC* value in case a Li+ battery has been selected (*BatType=*'0'). Depending on the battery type, the charging action will either be terminated (*BatType=*'1'; bit *EOC* will be set) or a top-off charge mode will be started (*BatType=*'0'), battery type determination must be performed by the system host.

Pulse charging

Pulse charge mode is initiated and the *CVM* bit will be set when the V_{CHOFF} threshold has been exceeded for the first time and bit *Pulse* is set. If the battery voltage at pin V_BAT is below the V_{CHOFF} threshold the battery switch will be switched on for a minimum on-time set by *TPON* in the *Charger Timing* register. If the battery voltage is below V_{CHOFF} at the end of the minimum on-time the battery switch will remain switched on until the battery voltage exceeds V_{CHOFF} . At this moment the battery switch is switched off for at least the minimum off-time set by *TPOFF*, and the battery switch will only be switched on again when the battery voltage falls below V_{CHOFF} . Note that unless the *Fast* bit is set the charge controller will limit the charge current to the value set by *ConstantCurrent* in the *Charger Current* register during on-pulses; if *Fast* is set, the charge current will not be limited during on-pulses.

At the beginning of the pulse charging procedure the battery switch will be operated at a duty cycle close to 100%. Towards the end of the charging cycle the charger will be switched off for long periods of time between short on-pulses. Eventually, the off-time will become longer than *TPOFFMAX*, and the charging cycle is terminated (*EOC* is set). In the following the charge controller starts the EOC operation.

Constant voltage charging

Constant voltage charge mode is initiated and the CVM bit will be set when the V_{CHOFF} threshold has been exceeded for the first time and bit *Pulse* is not set. In the following the charge controller will act to regulate the battery voltage to a value set by *ChVoltEOC* in the *Charger Config* register.

The charge current is monitored during constant voltage charging. It will be decreasing from its initial value during constant current charging and eventually drop below the value set by *TrickleCurrent* in the *Charger Current* register. If the measured charge current is less than or equal to *TrickleCurrent* and the battery voltage is larger than V_{CHRES}, the charging cycle is terminated and *EOC* is set . Then the charge controller starts the EOC operation.

For the USB charger, the EOC is set if the voltage through the USB charger drops below 25mA.

If both chargers are operating, both chargers have to reach EOC (End of charge) to continue with EOC operation.

EOC operation

There are two possibilities:

- if isolate_bat=1 the battery switch will be switch off and the battery charger regulates to its highest voltage V_{chlimit}. The USB_charger regulates to its maximum voltage, which is defined by V_{CHOFF}. The advantage of this mode is a longer lifetime of the Li+ battery, because there is no discharging after the EOC condition. If autoresume=1 and the battery voltage drops below V_{CHRES} the battery charger continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with constant voltage or fast charging.
- 2. If isolate_bat=0 the battery switch remains closed and the power to the system is supplied by the battery. The battery charger and the USB charger regulates to V_{EOC}, in case the battery is removed. If autoresume=1 and the battery voltage drops below V_{CHRES} the battery charger continues charging, by checking in trickle charge mode, if there is a battery connected, and then starting with constant voltage or fast charging.

Battery Detection and Restart of Charging:

If the battery voltage drops below VCHRES and the bit AutoResume is set, the battery detection is started. The battery switch will be switched into current source mode and VSUPPLY will be regulated to Vchlimit (Step Down Charger) and VCHOFF (USB charger) (regulation is performed to the higher of the two voltage settings and depends on the availability of the USB and VCHARGER supply). The AS3654 measured the battery current with the fuel gauge in this mode. If there is no current, the AS3654 is kept in this state and the bit NoBat is set. Otherwise the bit NoBat is cleared and the charger and the AS3654 continues with 'Constant Current Charging' mode.

Typical charging cycle

Table 33 – Charger Characteristics

VvBAT=3.0...5.5V; Tamb=-20...+85°C; unless otherwise specified.

Symbol	Parameter	Min	Тур	Max	Unit	Note
VCHARGER	VCHARGER operating range	5.0		15.0	V	For input voltage higher than 15V see above protection circuit; for chargers with input voltages down to 4.5V see: 'Application Note for DC/DC Step down Charger for Chargers Supplying 4.5V to 5.5V'
VCHDET	Charge adapter detection	50	75	105	mV	Hysteresis is > 40mV; for USB
VCHMIN	threshold	0	20	35	IIIV	and step down charger
ISTARTmax	Maximum load current during startup on Vsupply		5		mA	
Vuvlo	Undervoltage lockout threshold	-3%	2.73.4	+3%	V	Value is set by ResVoltRise in the Battery Voltage Monitor register
Vchoff	Charge termination threshold	-0.06	3.904.25	+0.06	V	Li+ battery (<i>BatType</i> ='0'); value is set by <i>ChVoltEOC</i> in the <i>Charger</i> <i>Config</i> register
			4.7			NiMH battery (<i>BatType</i> ='1')
VCHRES	Charger resume voltage		3.854.20		V	Value is set by <i>ChVoltResume</i> in the <i>Charger Config</i> register. Do not set V _{CHRES} higher than V _{CHOFF} !
Vcurr_preset	Charger constant current pre- set voltage		V _{RESRISE} +100mV		V	
VEOC	Charger EOC voltage		3.60		V	If isolate_bat=0; to prevent a system reset if the battery is removed in EOC operation
trickle,max	Trickle charge timeout		60		min	

Register Definition	Add	Default	Content								
Name	r.9	Deldan	b7	b6	b5	b4	b3	b2	b1	b0	
USB ChargerControl	07	ROM (52h)	ext_bats No_char w_en ging		usb_prio	usb_chg En	usb_Current				
ChargerControl1	08	ROM (41h)	lsolate_b at	Boost	trickle_t max	Pulse	Auto Resume	Fast	BatType	ChEn	
Charger Config	10	ROM (26h)	С	ChVoltResume DisOWB DisBDet		ChVoltEOC					
ChargerTiming	11	ROM (4bh)	TPOFFMAX			TPOFF			TPON		
ChargerStatus	66	NA		NoBat	EOC	CVM	Trickle	Resume	ChAct	ChDet	
ChargerStatus_usb	67	NA					batsw_o n	batsw_ mode	USB_C hAct	USB_Ch Det	

Table 34 – Charger Register Overview

Table 35 – Charger Status Register

Address 5; Read only access; register is reset at power-on-reset only.

Bit	Symbol	Default	Description
0	ChDet	NA	Bit is set when external charge adapter has been detected on pin VCHARGER
1	ChAct	NA	Bit is set when step down charger is operating (independent of Reg. bit no_charging)
2	Resume	NA	Bit is set when battery voltage has dropped below resume level
3	Trickle	NA	Bit is set when charger is in trickle charge mode
4	CVM	NA	Bit is set when charger is in top-off charge mode (constant voltage mode)
5	EOC	NA	Bit is set when charging has been terminated. Bit is cleared automatically when <i>ChEn</i> is cleared, no_charging ist set or charging is resumed.
6	NoBat	NA	Bit is set when battery detection circuit indicates that no battery is connected to the system. Detection is started after EOC and if bit autoresume=1 only. Bit is cleared automatically when a battery is connected, when <i>DisBDet</i> is set and/or when <i>ChEn</i> is cleared.

Table 36 – Charger Control1 Register

Address 8; R/W access; register is reset at power-on-reset only. Default value after reset: C1h.

Bit	Symbol	Default	Description
0	ChEn	ROM(1b)	 Disable step down charger (Independent of bit no_charging) Enable step down charger (default) (Independent of bit no_charging)
1	BatType	ROM(0b)	0 Li+ battery 1 NiMH battery
2	nc	ROM(0b)	
3	AutoResume	ROM(0b)	 Charging does not restart automatically in EOC when bit <i>Resume</i> is set. Charging will restart automatically in EOC when bit <i>Resume</i> is set.
4	Pulse	ROM(0b)	 Select constant voltage charging mode (default recommended) Select pulse charging mode
5	trickle_tmax	ROM(1b)	 Read: no timeout reached Write: reset trickle_tmax state t_{TRICKLE,MAX} timeout reached and trickle charging stopped
6	Boost	ROM(1b)	0 Don't use1 Normal operation of Trickle charger use

⁹ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Bit	Symbol	Default	Description
7			

Table 37 – Battery Voltage Monitor Register

Address 9; R/W access; register is reset at power-on-reset only. Default value after reset: ROM.

Bit	Symbol	Default	Description					
20	ResVoltRise	ROM (101b)	This value determines the reset level VRESRISE for rising VVBAT. It is recommended to set this value at least 200mV higher than VRESFALL.000bVRESRISE=2.7V100bVRESRISE=3.1V001bVRESRISE=2.8V101bVRESRISE=3.2V010bVRESRISE=2.9V110bVRESRISE=3.3V011bVRESRISE=3.0V111bVRESRISE=3.4V					
53	ResVoltFall	ROM (011b)	This value determines the reset level V _{RESFALL} for falling V _{VBAT} . It is recommended to set this value at least 200mV lower than V _{RESFALL} =2.000b000bV _{RESFALL} =2.7V100bV _{RESFALL} =3.1V001bV _{RESFALL} =2.8V101bV _{RESFALL} =3.2V010bV _{RESFALL} =2.9V110bV _{RESFALL} =3.3V011bV _{RESFALL} =3.0V111bV _{RESFALL} =3.4V					
6	SupResEn	ROM (0b)	 A hard reset is generated if Vsupply falls below 2.7V. (If VvBAT falls below VRESFALL only an interrupt is generated (if enabled) and the uProcessor can shut down the system) Vsupply Voltage below VRESFALL generates a reset 					
7								

Table 38 – Charger Timing Register

Address 11; R/W access; register is reset at power-on-reset only. Recommended value after reset: ROM 4Bh.

Bit	Symbol	Default	Description
20	TPON	ROM	Sets the minimum on-time in pulse charge mode from 137.3ms1098ms in steps of 137.3ms. Default is 011b = 549.2ms.
53	TPOFF	ROM	Sets the minimum off-time in pulse charge mode from 68.65ms549.2ms in steps of 68.65ms. Default is 001b = 137.3ms.
76	TPOFFMAX	ROM	Sets the maximum off-time in pulse charge mode before charging is terminated. 00b 4 x <i>TPON</i> (yields 1/5 of the charging current in constant current mode) 01b 9 x <i>TPON</i> (yields 1/10 of the charging current in constant current mode) 10b 19 x <i>TPON</i> (yields 1/20 of the charging current in constant current mode) 11b no termination (not recommended)

Table 39 – Charger Config Register

Address 10; R/W access; register is reset at power-on-reset only. Recommended value after reset: ROM ,26h.

Bit	Symbol	Default	Description		
20	ChVoltEOC	ROM	Sets the end-of-charge voltage level V _{CHOFF} . 000b 3.90V 100b 4.10V 001b 3.95V 101b 4.15V 010b 4.00V 110b 4.20V (default) 011b 4.05V 111b 4.25V		
3	DisBDet	ROM	 Enable battery presence indication(default) Disable battery presence indication. Don't use 		
4	DisOWB	ROM	 Enable "operation without battery" feature(default) Disable "operation without battery" feature. Don't use 		
75	ChVoltResume	ROM	Sets the resume voltage level V _{CHRES} . 000b 3.85V 100b 4.05V 001b 3.90V(default) 101b 4.10V		
Bit	Symbol	Default	Descrip	otion	
-----	--------	---------	---------	-------	------------
			010b	3.95V	110b 4.15V
			011b	4.00V	111b 4.20V

7.9.2 Fuel Gauge

The fuel gauge circuit enables remaining capacity estimation of the battery by tracking the net current flow into and out of the battery using a voltage-to-frequency converter.

Voltage-to-Frequency Converter

The voltage-to-frequency (VFC) converter constantly monitors the voltage drop across an external current sense resistor R_{sense} connected in series between the negative battery terminal and ground. The use of an additional external RC lowpass filter is highly recommended. Using two 4.7k Ω resistors ($R_{filt1,2}$) and a 1 μ F ceramic capacitor (C_{filt}), the filter cut-off is approximately 16.9 Hz. This filter will capture the effect of most spikes, and will thus allow the current accumulators to accurately reflect the total charge that has gone into or out of the battery.

The key building block of the VFC is an integrator. It will integrate the voltage V_{SNS} across input pins ISENSP and ISENSN. If V_{SNS} is positive (battery is charged), the output voltage of the integrator increases; a negative input voltage (battery is discharged) will cause the integrator output voltage to decrease.

Symbol	Parameter	Min	Тур	Max	Unit	Note
fclk	Internal reference clock		f _{clk_int} /2		MHz	internal CLK frequency/2 Programmable: 0.8 to 1.15 MHz
fvfc	Sample frequency		fclк/59		Hz	
Visensp Visensn	Input voltage	-0.1		0.1	V	
ZISENSP ZISENSN	Input impedance	4.67			MΩ	
AVFC	(Dis)Charge gain		91.0		Hz / V	f _{CLK} = 1.1MHz
FRVFC	Fundamental rate		3.05		μVh	ICLK - 1: IMITZ
	Supply voltage gain coefficient		tbd		% / V	
	Temperature gain coefficient		tbd		%/°C	
VOFF	Uncompensated offset voltage	-500		500		
Voff,comp	Compensated offset voltage	-50	±10	50	μV	Offset compensation with CalMod=1 only. Don't use CalMod=0

Table 40 – Fuel Gauge parameters

Charge Current Accumulator

The output signals of the charge count dividers are used as inputs for the charge current accumulator that is realised as a 15bit up-down counter with separate inputs for incrementing and decrementing the counter. An additional sign bit indicates the polarity of the counter value that is maintained in two's complement format. The current accumulator is updated at a rate equivalent to one count per 3.05μ Vh, which is equivalent to one count per 61.03μ Ah when using a $50m\Omega$ current sense resistor. It will roll over beyond (7FFF)h when incremented and (0000)h when decremented, and the value given by the counter will be ambiguous in that case. It is the responsibility of the host to read the counter before rollover occurs.

The content of the charge current accumulator will be transferred into the *DeltaCharge* register when the *UpdReq* bit in the *FuelGauge* register has been set. The update of the register has to be synchronised to the sample clock f_{VFC} and can take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the *UpdReq* bit is cleared automatically and the charge current accumulator together with the sign bit will be reset.

Elapsed Time Counter

The sample clock f_{VFC} of the fuel gauge circuit is fed to a 14-bit clock count divider. Its output signal is used as a clocking signal for the 16-bit elapsed time counter, resulting in an equivalent rate of 1.1379 counts per second (4096.60 counts = 1 hour). The elapsed time counter will rollover beyond (FFFF)h, and the value given by the counter will be ambiguous in that case. It is the responsibility of the host to read the counter before rollover occurs.

The content of the elapsed time counter will be transferred into the *ElapsedTime* register when the *UpdReq* bit in the *FuelGauge* register has been set. The update of the register has to be synchronised to the sample clock f_{VFC} and can take up to 1.5 clock cycles (max. 2.5µs). After the registers have been updated successfully, the *UpdReq* bit is cleared automatically and the elapsed time counter will be reset.

Offset Calibration Mode

Although the VFC compensates for the offset of the integrator the fuel gauge features an additional offset calibration mode to enhance the measurement accuracy even further. By setting the *CalReq* bit in the *FuelGauge* register the integrator is reset and the offset calibration mode is activated. The charge count dividers are bypassed during offset calibration to allow a faster calibration procedure with adequate resolution. The offset is accumulated during 16 clocks of the elapsed time counter, the resulting offset calibration value *FGOffCal* has a resolution of 3.05μ V and is transferred to the *DeltaCharge* register. The *CalReq* bit is cleared automatically after the calibration has completed successfully and *FGOffCal* has been written to the register.

Please note that offset calibration is not possible while the charger is active. If the *CalReq* bit is set while the charger is active the calibration will start automatically after the charger has been disabled by clearing the *ChEn* bit or if the external charge adapter has been removed. If during an offset calibration procedure the charger is enabled the offset calibration mode is terminated, the *CalReq* bit is cleared, the current value of the elapsed time counter is transferred to the *ElapsedTime* register and the *DeltaCharge* register is loaded with (FFFF)h.

Calculation of Battery Status

The host system can calculate all the parameters necessary for estimating the remaining battery capacity by evaluating *ElapsedTime*, *DeltaCharge* and *FGOffCal*.

Calculating Elapsed Time

The host system can evaluate the change in time Δt by setting the *UpdReq* bit in the *FuelGauge* register and reading *ElapsedTime* after *UpdReq* has been automatically cleared. The change in time in seconds is given by:

∆t = ElapsedTime x 3600 / 4096.60 [s]

Note that the absolute accuracy of Δt is directly related to the absolute accuracy of the internal reference oscillator. To cancel the error associated with the accuracy of the oscillator, a correction factor CV can be introduced. CV can be evaluated by comparing the change in time calculated by (1) with some reference value Δt_{REF} obtained from a RTC or measured during system calibration. CV is given by:

 $CV = \Delta t_{REF} / \Delta t$

(2)

(1)

By multiplying Δt and CV the correct value for the change in time can be calculated:

 $\Delta t_{CORR} = CV \times \Delta t [s]$

(3)

Calculating Average Current

The host system can calculate the average current during the last time period by setting the *UpdReq* bit in the *FuelGauge* register and reading *DeltaCharge* and *ElapsedTime* after *UpdReq* has been automatically cleared. Together with *FGOffCal* determined during offset calibration mode the average current is given by:

 $I_{AVG} = DeltaCharge / (\Delta t \times A_{VFC} \times R_{sense}) - FGOffCa/ \times 3.05 \mu V / R_{sense} [A]$ (4)

 Δt is the change in time in seconds calculated by (1), A_{VFC} is the gain of the VFC in Hz/V, R_{sense} is the value of the sense resistor in Ω and *FGOffCa*/is the offset calibration value. As *DeltaCharge* and Δt both are proportional to the oscillator frequency, no correction factor needs to be introduced in the formula.

Calculating the Time to Empty The time to empty is calculated from the average current I_{AVG} given by (4). The longer the time period for which I_{AVG} is calculated, the more accurate the value for I_{AVG} and therefore the estimated time to empty will be. It is given by:

TTE = RC / IAVG [s]

 Table 41 – Fuel Gauge Register definitions

Register Definition		Content							
Name	Addr.	b7	b6	b5	b4	b3	b2	b1	b0
FuelGauge	12				_	CalMod	CalReq	UpdReq	FGEn
DeltaCharge _{MSB}	68	sign	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	28
DeltaChargeLSB	69	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
ElapsedTime _{MSB}	70	2 ¹⁵	214	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
ElapsedTimeLSB	71	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

Table 42 – Fuel Gauge Bit definitions

Name	Default	Access	Description
FuelGauge - ROM	default (01)	h	
FGEn	ROM	R/W	0 Disable Fuel Gauge1 Enable Fuel Gauge (default)
UpdReq	0b	R/W	 This bit controls the update of the <i>DeltaCharge</i> and <i>ElapsedTime</i> registers. When set, the bit is cleared automatically after the registers have been updated successfully. Bit should not be set to "0" by the host! 0 Update of registers complete (default) 1 Request update of registers
CalReq	0b	R/W	 This bit controls the offset calibration. When set, the bit is cleared automatically after the calibration has completed successfully. Calibration complete OR terminate offset calibration (default) Request offset calibration
CalMod	0b	R/W	 Sets the mode for offset calibration Connect inputs to ground internally (default) Use ISENSP and ISENSN (for testing purposes only)
DeltaCharge - rea	d only		
DeltaCharge	(0000)h	R	The register is maintained in two's complement format with a resolution of 3.05μ Vh and a full-scale value of ± 99.98 mVh. When using a $50m\Omega$ current sense resistor this is equivalent to a resolution of 61.03μ Ah and a full-scale value of 1.999Ah. Sign is set for negative values. Register will be updated after setting bit <i>UpdReg</i> to "1".
ElapsedTime – rea	id only		
ElapsedTime	(0000)h	R	The elapsed time count is stored in the register with a resolution of 0.8788s and a full-scale value of 15.997 hours. Register will be updated after setting bit <i>UpdReq</i> to "1".

AS3654

Calculating Accumulated Current

Accumulated current is used to calculate the absolute remaining capacity of the battery. It is given by:

 $I_{ACC} = I_{AVG} \times \Delta t_{CORR} [As]$

Calculating the Remaining Capacity

Remaining capacity is the entire goal of fuel gauging. It is given by:

(7)

(5)

(6)

Register Definition	Add	Default	Content								
Name	r . ¹⁰	Deldan	b7	b6	b5	b4	b3	b2	b1	b0	
FuelGauge	12	ROM (01h)					CalMod	CalReq	UpdReq	FGEn	
USB ChargerControl	07	ROM (52h)	ext_bats w_en	No_char ging	usb_prio	usb_chg En		usb_Curren	t		
ChargerStatus_usb	67	NA					batsw_o n	batsw_ mode	USB_C hAct	USB_Ch Det	
DeltaCharge _{MSB}	68	NA	sign	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	
DeltaChargeLSB	69	NA	2 ⁷	2 ⁶	<mark>2</mark> ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	
ElapsedTime _{MSB}	70	NA	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸	
ElapsedTimeLSB	71	NA	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	

7.9.3 Charger Operation

The charger controls the battery current through the internal transistor between VSUP_SW1,2 and VBAT_SW1,2, the step down charger and the battery switch between VSUPPLY and VBAT. With this control the charger obtain all different operating modes.

Charge Current Regulator

The regulator is programmed by setting *TrickleCurrent* and *ConstantCurrent* in the *ChargerCurrent* register and yields a resolution of 0.625mV or 12.5mA when using a sense resistor of $50m\Omega$.

Table 44 -	Charge Currei	nt Reaulator	<i>parameters</i>
	e	gunater	parametere

Symbol	Parameter	Min	Тур	Мах	Unit	Note
t MEAS	Measurement period		68.65		ms	f _{clk int} = 2.2MHz
IMEAS,LSB	Resolution of InstCurCnt		0.625		mV	

Table 45 – Charger Register map

Register Definition	Add	Default	Content	Content									
Name	r . ¹¹	Delduit	b7	b6	b5	b4	b3	b2	b1	b0			
ChargerCurrent	13	ROM (2Eh)	ch_voltage			ConstantCurrent			Trickle	Current			

Table 46 – Charger Bit definitions

Name	Default	Access	Description
ChargerCurrent-	ROM		
TrickleCurrent	ROM	R/W	Sets the trickle current. Default is $(01)b = 2.5mV \times R_{sense^{-1}}$. $(00)b$ $1.25mV \times R_{sense^{-1}}$ $(01)b$ $2.50mV \times R_{sense^{-1}}$ $(10)b$ $5.00mV \times R_{sense^{-1}}$ (default) $(11)b$ $10.0mV \times R_{sense^{-1}}$

¹⁰ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

¹¹ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

Name	Default	Access	Description					
ConstantCurrent	ROM	R/W	Sets the charging current in constant current mode from (0mV35mV) x R _{sense⁻¹} in steps of 5mV x R _{sense⁻¹} . Default is (011)b = 15mV x R _{sense⁻¹} .					
Ch_voltage - ROM	1							
ch_voltage	ROM	R/W	Charger voltage after EOC and isolate_battery=1 (000)b 4.3V (001)b 4.4V (default) (010)b 4.5V (011)b 4.6V (100)b 4.7V (101)b 4.8V (111)b 4.9V (111)b 5.0V					

7.10 Step Down DC/DC Converter

Figure 14 – Step Down DC/DC Converter Blockdiagram

Functional Description

The step-down converter is a high efficiency fixed frequency current mode regulator. By using low resistance internal PMOS and NMOS switches efficiency up to 95% can be achieved. The fast switching frequency allows using small inductors, without increasing the current ripple. The unique feedback and regulation circuit guarantees optimum load and line regulation over the

whole output voltage range, up to an output current of 500mA, with an output capacitor of only 10µF. The implemented current limitation protects the DCDC and the coil during overload condition.

To allow optimised performance in different applications, there are bit settings possible, to get the best compromise between high efficiency and low input, output ripple:

Low ripple, low noise operation:

Bit settings:

sdX_dis_curmin=1

In this mode there is no minimum coil current necessary before switching off the PMOS. As result, the ON time of the PMOS will be reduced down to tmin_on at no or light load conditions, even if the coil current is very small or the coil current is inverted. This results in a very low ripple and noise, but decreased efficiency, at light loads, especially at low input to output voltage differences. Because of the inverted coil current in that case the regulator will not operate in pulse skip mode.

Figure 15 -sdX_dis_curmin=1 operation

High efficiency operation (default setting):

Bit settings:

sdX_dis_curmin=0

In this mode there is a minimum coil current necessary before switching off the PMOS. As result there are less pulses at low output load necessary, and therefore the efficiency at low output load is increased. This results in higher ripple, and noisy pulse skip operation up to a higher output current.

Figure 16 -sdX_dis_curmin=0 operation

1: LX voltage, 2:coil current (1mV=1mA) 3: Vout

It's also possible to switch between these two modes during operation:

E.g.:

sdX_dis_curmin=0: System is in idle state. No audio, RF signal. Decreased supply current preferred. Increase ripple doesn't effect system performance.

sdX_dis_curmin=1: System is operating. Audio signal on and/or RF signal used. Decreased ripple and noise preferred. Increased power supply current can be tolerated.

100% PMOS ON mode for low dropout regulation:

For low input to output voltage difference the sdX_dis_pon bit can be set, to allow 100% duty cycle of the PMOS transistor, if the output voltage drops by more than 4%.

Low power mode:

The sdX_lpo mode bit can be set all the time. This mode allows internal power down, of not used blocks during pulseskip mode, which results in a better efficiency at light output loads.

Inductor setting:

The step down regulator is optimised for $2.2\mu H$ at 2.2MHz~ and $4.7\mu H$ at 1.1MHz~Use the following settings for optimised operation: sdX_4u7=1 for $4.7\mu H$ at 1.1MHz~sdX_4u7=0 for $2.2\mu H$ at 2.2MHz~

Symbol	Parameter	Min	TYP	Мах	Unit	Note
Vin	Input voltage	3.0		5.5	V	PIN VSUPPLY_1,VSUPPLY_2, VSUPPLY_3
Vout	Regulated output voltage	0.6		3.3	V	
V _{OUT_tol}	Output voltage tolerance	-50		+50	mV	output voltage <2.0V
V OUT_tol	Output voltage tolerance			+100	mV	output voltage >2.0V
Ilimit	Current limit		800		mA	

Table 47 – Step Down DC/DC Converter parameters

Symbol	Parameter	Min	TYP	Max	Unit	Note
R _{PSW}	P-Switch ON resistance			0.5	Ω	V_SUPPLYx=3.0V
R _{NSW}	N-Switch ON resistance			0.5	Ω	V_SUPPLYx=3.0V
lload	Load current	0		500	mA	
f _{SW}	Switching frequency		2.2		MHz	sdX_frequ=0, f _{clk_int} =2.2MHz
ISW	Switching requercy		1.1		MHz	sdX_frequ=1, f _{clk_int} =2.2MHz
Cout	Output capacitor		10		μF	Ceramic
Lx	Inductor	2.2		4.7	μH	+/- 10% tolerance
η _{eff}	Efficiency		90		%	lout=100mA, Vout=2.3V, Vsup.=3V
Ivdd	Current consumption		250 100 0.1		μA	Operating current without load Low power mode current Shutdown current
t _{MIN_ON}	Minimum on time		80		ns	
t_{MIN_OFF}	Minimum off time		40		ns	
VLineReg	Line regulation		tbd tbd		mV	Static Transient;Slope: t _r =10µs
VLoadReg	Load regulation		tbd tbd		mV	Static Transient;Slope: t _r =10µs

 Table 48 – Step Up DC/DC Bit definitions

Name	Default	Access	Description			
sdX_dis_curmin	0	R/W	 Step down curmin feature control 0: curmin feature enabled: Inductor current regulated to min 170mA. Higher efficency in low dropout and low output current operation. Higher output ripple and noise. 1: curmin feature disabled: Decreased efficiency in low dropout mode and at low output current. Small output ripple and noise. 			
sdX_dis_pon	0	R/W	Step down pon feature control 0: PON feature enabled: 100% duty cycle (pmos always on) if output voltage drops more than 4%. Increased output ripple in that operation. 1: PON feature disabled: Maximum dutycycle=1-(tmin_off*fsw)			
sdX_lpo	0	R/W	Set always to 0 Step down low power mode: 0: Increased current consumption in pulseskip mode 1: Decreased current consumption in pulseskip mode			
sdX_on	00h	R/W	Switch on/off the step down dc/dc converter			
sdX_clkinvert	00h	R/W	Inverts the input clock of the step down converter			
sdX_psw_on		R/W	Only if $buck_{on} = 0$, switch on PSW (0.5 Ω PMOS)			
sdX_dis_n		R/W	If '1' the synchron rectifier is disabled (NSW is always off)			
sdX_4u7		R/W	If '1' optimise operation for 4.7µH inductor			
sdX_nsw_on		R/W	Only if $buck_{on} = 0$, switch on NSW (0.5 Ω NMOS)			

Name	Default	Access	Description			
sdX_v		R/W	Control the voltage selection for the step down DC/DC converter 000000 0.6 V (LSB=50mV) 111000 – 11111 3.4 V			
sdX_frequ		R/W	Select the step down frequency 0 f _{clk_int} (1.6MHz to 2.3 MHz) 1 f _{clk_int} /2 (0.8MHz to 1.15 MHz)			

7.10.1 Typical Performance Characteristics

Figure 17 – DC/DC step-down Efficiency (sdX_dis_curmin=0, sdX_lpo=0)

Figure 18 – PCB Layout recommendation

Table 49 – Step down Register map

Register Definition	Add	Default	Content							
Name	r . ¹²	Delaun	b7	b6	b5	b4	b3	b2	b1	b0
Reg Power1 Ctrl	23	ROM	cp_on	sd3_on	sd2_on	sd1_on	ldo_dig2 _on	ldo_dig1 _on	ldo_rf2_ on	ldo_rf1_ on
Step Down Control1	32	00h	sd2_nsw _on	sd2_4u7	sd2_dis _n	sd2_ps w_on	sd1_ns w_on	sd1_4u7	sd1_dis _n	sd1_psw _on
Step Down Control2	33	00h	sd3_dis_ pon	sd2_dis _pon	sd1_dis _pon	sdX_lpo	sd3_ns w_on	sd3_4u7	sd3_dis _n	sd3_psw _on
Step down charger control	34	00h		sd2_dis _curmin	sd2_dis _curmin	sd1_dis _curmin				sdc_freq u

7.11 Low Dropout Regulators (LDO)

The low dropout regulators are linear high performance regulators with programmable output voltage.

They are controlled by the following registers:

Name	Default	Acces	Description
ldo_rfX_on		R/W	Switch on control of RFX LDO (X = 1,2); Important: Set rfX_sw=0 before setting Ido_rfX_on=1
			Control the voltage selection for LDO's VRF_1 – VRF_2
ldo_rfX_v	Boot- ROM	R/W	00000 1.85V (LSB=50mV) 11111 3.40V
Ide diaX v		R/W	Control the voltage selection for LDO's VDIG_1 and VDIG_2
ldo_digX_v		Γ\/ VV	(see <i>Table</i> 54 – Digital LDO (VDIG_1, VDIG_2) Programming voltage table)

Table 50 – LDO's Bit definitions

¹² Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Name	Default	Acces	Description
rfX_sw	ROM	R/W	If '1' RFx-LDO is operating as High side switch (Ron=1 Ω), valid if <i>Ido_rfX_on</i> =0
rf1_swprot_en	ROM	R/W	If '1' current limitation is enabled, if RFx-LDO is operating as High side switch
rf1_lcurr_en	ROM	R/W	If '1' current limitation llimit=llimit/2 If '0' current limitation = llimit

7.11.1 RF LDO's (VRF_1 - VRF_2)

These LDO's are designed to supply sensitive analogue circuits like LNA's, Transceivers, VCO's and other critical RF components of cellular radios. Another application is the supply of audio devices or as a reference for AD and DA converters. The design is optimised to deliver the best compromise between quiescent current and regulator performance for battery powered devices.

Stability is guaranteed with ceramic output capacitors of 1μ F +/-20% (X5R) or 2.2 μ F +100/-50% (Z5U) for RF2 and 2.2 μ F +/-20% (X5R) or 4.7 μ F +100/-50% (Z5U) for RF1. The low ESR of these caps ensures low output impedance at high frequencies. Regulation performance is excellent even under low dropout conditions, when the power transistor has to operate in linear mode. Power supply rejection is high enough to suppress the PA-ripple on the battery in TDMA systems at the output. The low noise performance allows direct connection of noise sensitive circuits without additional filtering networks. The low impedance of the power device enables the device to deliver up to 150mA even at nearly discharged batteries without any decrease of performance.

Figure 19 – Analog LDO Blockdiagram

Table 51 - Analog LDO (VRF_1, VRF_2) Characteristics

Vx_IN=4V; I_{LOAD}=150mA; T_{amb}=25°C; C_{LOAD} =2.2µF (Ceramic); unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Unit	Note
Vx_IN	Supply voltage rage	3		5.5	V	
Ron	On resistance			0.5	Ω	VRF_1
Ron	On resistance			1	Ω	VRF_2
PSRR	Dower supply rejection ratio	70			dB	f=1kHz
FORR	Power supply rejection ratio	40			uБ	f=100kHz
IOFF	Shut down current			100	nA	
Ivdd	Supply current			50	μA	without load
Noise	Output noise			50	μV _{rms}	10Hz < f < 100kHz

Symbol	Parameter	Min	Тур	Max	Unit	Note
t _{start}	Startup time			200	μs	
Vout	Output voltage	1.85		2.85	V	VRFX_IN>3.0V, VRF1 @ lout=300mA, VRF2 @ lout=150mA (X=1,2)
Vout	Oulput voltage	1.85		3.4	V	VRFX_IN>3.55V, VRF1 @ lout=300mA, VRF2 @ lout=150mA (X=1,2)
V _{out_tol}	Output voltage tolerance	-50		50	mV	
VLineReg	Line regulation	-1		1	mV	Static
V LineReg		-10		10	IIIV	Transient;Slope: t _r =10µs
V _{LoadReg}	Load regulation	-1		1	mV	Static
V LoadReg	Load legulation	-10		10	IIIV	Transient;Slope: t _r =10µs
I _{LIMIT_VRF1_H} CURR	Current limitation		800		mA	VRF_1, rf1_lcurr_en=0
I _{LIMIT_VRF1_L} CURR	Current limitation		400		mA	VRF_1, rf1_lcurr_en=1 and during startup
LIMIT_VRF2	Current limitation		400		mA	VRF_2
CLOAD_RF1	Load capacitor	2		5	μF	ceramic only
CLOAD_RF2	Load capacitor	1		5	μF	ceramic only

Table 52 – LDO_RF Register map

1001002 200	_	5								
Register Definition	Add	Default	Content							
Name	r. ¹³	Deldun	b7	b6	b5	b4	b3	b2	b1	b0
LDO_RF1 Voltage	03	ROM		rf1_swpr ot_en	rf1_lcurr _en			ldo_rf1_v		
LDO_RF2 Voltage	04	ROM						ldo_rf2_v		
Reg Power1 Ctrl	23	ROM	cp_on	sd3_on	sd2_on	sd1_on	ldo_dig2 _on	ldo_dig1 _on	ldo_rf2_ on	ldo_rf1_ on

7.11.2 Digital LDO's (VDIG_1, VDIG_2)

The Digital LDO's can be used in any medium power system or subsystem where quiescent power consumption of the regulator itself has to be minimised without sacrificing its performance. For its stability a cheap 1uF ceramic capacitor is required. The 5V charge pump will be switch on automatically, if one of the digital LDO's are switched on

¹³ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Figure 20 – Digital LDO Blockdiagram

Table 53 – Digital LDO (VDIG_1, VDIG_2) Characteristics VSUPPLY=4V; ILOAD=200mA; Tamb=25°C; CLOAD =1uF (Ceramic); unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Unit	Note
VDIGX_IN	Supply voltage range	1		5.5	V	
Ron	On resistance			4	Ω	
PSRR	Power supply rejection ratio	60			dB	f=1kHz
FORR	Fower supply rejection ratio	30			ųВ	f=100kHz
IOFF	Shut down current			100	nA	
Ivdd	Supply current			20	μA	without load
t _{start}	Startup time			200	μs	
Vout	Output voltage	0.75		2.20	V	Vsup.>3.0V, V5_6=5.2V, lout<200mA
V out	Oulput voltage	0.75		2.5	V	Vsup.>3.0V, V5_6=5.2V, lout<100mA
V _{out_tol}	Output voltage tolerance	-50		50	mV	
	Line regulation	-10		10	mV	Static
VLineReg		-50		50		Transient;Slope: tr=10µs
	Lood regulation			20	mV	Static
VLoadReg	Load regulation	-50		50		Transient;Slope: t _r =10µs
ILIMIT	Current limitation		400		mA	

Table 54 – Digital LDO (VDIG_1, VDIG_2) Programming voltage table

Code (d)	Code (b)	Vout [V]	Code (d)	Code (b)	Vout [V]
0	000000	0.75	22	010110	1.80
1	000001	0.80	23	010111	1.80
2	000010	0.85	24	011000	1.80
3	000011	0.90	25	011001	1.80
4	000100	0.95	26	011010	1.80
5	000101	1.00	27	011011	1.80
6	000110	1.05	28	011100	1.80
7	000111	1.10	29	011101	1.80
8	001000	1.15	30	011110	1.80
9	001001	1.20	31	011111	1.80
10	001010	1.25	32	100000	1.50
11	001011	1.30	33	100001	1.60
12	001100	1.35	34	100010	1.70
13	001101	1.40	35	100011	1.80
14	001110	1.45	36	100100	1.90
15	001111	1.50	37	100101	2.00

Code (d)	Code (b)	Vout [V]
16	010000	1.55
17	010001	1.60
18	010010	1.65
19	010011	1.70
20	010100	1.75
21	010101	1.80

Code (d)	Code (b)	Vout [V]
38	100110	2.10
39	100111	2.20
40	101000	2.30
41	101001	2.40
42	101010	2.50

. . .

21 010101 1.80 Note: full performance for Vout≤2.20V max. 100mA output current for Vout≤2.50V don't use values Vout>2.50V

Table 55 – LDO_DIG Register map

Register Definition	Add r. ¹⁴	Add	Add	Add	Add	Default	Content									
Name		Deldan	b7	b6	b5	b4	b3	b2	b1	b0						
LDO_DIG1 Voltage	05	ROM			ldo_dig1_v											
LDO_DIG2 Voltage	06	ROM		ldo_dig2_v												
Reg Power1 Ctrl	23	ROM	cp_on	sd3_on	sd2_on	sd1_on	ldo_dig2 _on	ldo_dig1 _on	ldo_rf2_ on	ldo_rf1_ on						

7.11.3 Low power LDO (V2_5)

The Low power LDO V2_5 is needed to supply the chip core (analog and digital) of the device. It is designed to get the lowest possible power consumption, and still offering reasonable regulation characteristics. The regulator has three supply inputs selecting automatically the higher one. This gives the possibility to supply the chip core either with the battery or with the charger depending on the conditions. Bulk switch comparators are used to avoid any parasitic current flow. To ensure high PSRR and stability, a low-ESR ceramic capacitor of min. 1μ F must be connected to the output.

Note: Levelshifters in both directions (input- and output) are placed between digital pins and the digital core of the device.

Table 56 – Low power LDO (V2_5) Characteristics

VBAT=4V; I_{LOAD_ext}=0; T_{amb}=25°C; C_{LOAD} =2.2µF (Ceramic); unless otherwise specified

Symbol	Parameter	Min	Тур	Max	Unit	Note
VBAT	Supply voltage rage	2.8		5.5	V	
VCHARGER	Supply voltage lage	4		15	v	
Ron	On resistance			50	Ω	Guaranteed per design
PSRR	Power supply rejection ratio	60			dB	f=1kHz
FORR	Power supply rejection ratio	40			uБ	f=100kHz
IOFF	Shut down current			100	nA	
Ivdd	Supply current			3	μA	Guaranteed per design, consider chip internal load for meas.
t _{start}	Startup time			200	μs	
Vout	Output voltage	2.4	2.5	2.6	V	
V _{out_tol}	Output voltage tolerance	-50		50	mV	
Mar -	Line regulation	-10		10	m\/	Static
VLineReg	Line regulation	-50		50	mV	Transient;Slope: t _r =10µs
M	Load regulation	-10		10	mV	Static
VLoadReg		-50		50	111V	Transient;Slope: t _r =10µs

¹⁴ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.12 5V Charge Pump

Figure 21 – Digital LDO Blockdiagram

The charge pump uses the pad VCP_IN as input, regulates and doubles its voltage with the help of the flying capacitor between CAPP and CAPN to its output VCP_OUT. If the bit cp_pulseskip is set, the charge pump operates in pulse skip mode, and only starts cycles if its output voltage is below this level. In this mode the supply current is reduced.

The charge pump requires the following external components:

Symbol	Parameter	Min	Тур	Max	Unit	Note
CFLY	External flying capacitor	370	470	850	nF	Ceramic X5R or X7R low-ESR capacitor between CAPP and CAPN
CSTORE	External storage capacitor	1.76	2.2	2.64	μF	Ceramic low-ESR capacitor between VCP_OUT and VSS
Dout	Schottky Diode for startup between VCP_IN and VCP_OUT	1			A	Peak current

Make the connections of the two external capacitors as short as possible.

Table 58 – Charge Pump Characteristics

Symbol	Parameter		Тур	Max	Unit	Note
V _{CPIN}	Charge Pump input voltage	3.0		5.5	V	

Symbol	Parameter	Min	Тур	Мах	Unit	Note
f _{IN}	Switching frequency		1.1		MHz	cp_freq=0, f _{clk_int} =2.2MHz
			0.55		MHz	cp_freq=1, f _{clk_int} =2.2MHz
I _{CPOUT}	Output Current	0.0		100	mA	<pre>VCP_IN = 3.2V, Clock = f_{clk_int}/2; cp_pulseskip=0; fin=1.1MHz</pre>
VCPOUT	Output Voltage	4.9	5.2	5.6	V	
V _{CPSKIP}	Output Voltage during pulseskip		4.92		V	Use with cp_frequ=1 only
CP_noload	Supply current without load		2		mA	1.1MHz switching frequency
ICP_pulseskip	Charge pump supply current without load in pulseskip mode		20		μA	cp_pulseskip=1 and cp_frequ=1

Table 59 – Charge Pump Bit definitions

Name	Default	Access	Description		
cp_on		R/W	Switch on of the charge pump block, charge pump is automatically activated when any of the following blocks are active: VDIG1, VDIG2		
cp_pulseskip	ROM	R/W	Switches on the pulseskip mode of the charge pump 0 Normal fixed frequency mode 1 Pulse skip, low power mode (Set cp_frequ=1 in this mode)		
cp_freq		R/W	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		

Table 60 – Charge pump	Register map
------------------------	--------------

Register Definition	Add	Default	Content									
Name	r . ¹⁵	.15 Deradit	b7	b6	b5	b4	b3	b2	b1	b0		
Charge Pump Control	14	ROM (00h)						cp_clkin v	cp_freq	cp_puls eskip		

¹⁵ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.13 Audio

7.14 Common mode voltage generation of HP_CM, LINE_CM

The common mode voltage of the Headphone and Lineout is stored in the C_hpcm and C_linecm capacitor. These capacitor are also responsible for the popless startup, PSRR of the amplifiers and sense path of the GND cancellation circuit. Startup and PSRR is defined by the value of the external capacitors. The RC limits the maximum achievable PSRR: R=6MOhm typ, C=0.1...1uF :

Capacitor value for C_hpcm and C_linecm	Startup time	Maximum achievable PSRR		
	(typ)	@ 1kHz (typ)	@ 100Hz (typ)	
uF	msec	dB	dB	
0.1	150	76	56	
1	1500	90	76	

7.15 First AudioSet Register

Audio LDO has to be switched on first, and enables all other functions. The register is R/W; default value is 00h

Table 62 - AudioSetT Register						
Bit	Symbol	Default	Description			
7						
6						
5	mclk_invert		MCLK invert selection			
			0: Change of LRCLK at falling edge of MCLK			
			1: Change of LRCLK at rising edge of MCLK			
4	aud_ldo_on		Audio LDO ON control			
			0: Audio LDO off			
			1: Audio LDO on			
3	gnd_sw_on	00h	0: GND switch off 0V at pin GND_SW			
			1: GND switch on Vsupply at pin GND_SW			
2	mux_sel		0: DAC input selected			
			1:Line input selected			
1	dac_on		Switch on control of AUDIO DAC			
			1: DAC enabled (Switch on , if I2S signal valid only)			
			0: DAC disabled			
0	lin_on		1: Line input enabled			
			0: Line input disabled			

Table 62 - AudioSet1 Register

Second AudioSet Register

The register is R/W; default value is 00h

Table 63 - AudioSet2 Register

	5						
Bit	Symbol	Default	Description				
7	I2S_mclk_en	0h	 0: Generation of the master clock by the internal PLL 1: Use Pin LRCLK_2 as MCLK_1 input; (the bit I2S_select is used to switch between MCLK *128 = LRCLK and MCLK *256 = LRCLK) 				

6	I2S_select	0h	0:Select I2S_1 input 1:Select I2S_2 input
5,4	ibr_hph<1:0>		Bias current reduction settings for headphone output: 00: 0% 01: 17% 10: 34% 11: 50%
3	NA		Don't use
2	dith_on		1: add dither to the audio stream
			0: no dither added
1,0	ibr_dac<1:0>		Bias current reduction settings for DAC:
			00: 0%
			01: 25%
			10: 40%
			11: 50%

Table 64 – Low voltage status Register

Bit	Symbol	Default	Description
5	hpdet	NA	Headphone detect status register

7.16 Digital Audio Input

7.16.1 General

Digital audio data can be fed into the AS3654 via the I2S interface These input data are then used by the 18-bit DAC to generate the analog audio signal.

The stage is set to mute by default; If the DAC input is not enabled.

7.16.2 Signal Description

The digital audio interface uses the standard I2S format:

- left justified
- MSB first
- one additional leading bit

MCLK has to have a fixed ratio of 128 or 256 to LRCK. With a LRCK equal to 32, 44.1 or 48kHz, the MCLK can be generated by the on-chip PLL (do not use the internal PLL if there is jitter on the LRCLK1 or 2). For lower sample rates the MCLK has to generated external.

The high going edge of MCLK has to have timing separation from LRCK edges. If the clock generation is so that LRCK edges are at the same time as MCLK high going edges, the MCLK can be inverted to guarantee a proper DAC function. This audio input interfaces uses an I2S synchroniser to be able to handle audio sample length of 24bits or less.

Figure 23 – I2S Timing Diagram

Table 65 – PLL, MCLK Settings

I2S_mclk_en	I2S_select	mclk_invert	Description
0	0	0	I2S_1 selected (PLL used)
U	0	0	Internal MCLK synchronised to external LRCLK
0	0	1	I2S_1 selected (PLL used)
0	0	I	Internal LRCLK used, synchronised to external SDI
0	1	0	I2S_2 selected (PLL used)
0	Ι	0	Internal MCLK synchronised to external LRCLK
0	1	1	I2S_2 selected (PLL used)
0	Ι	I	Internal LRCLK used, synchronised to external SDI
1	0	0	I2S_1 selected, external MCLK *128 = LRCLK
1	0	1	I2S_1 selected, external MCLK *128 = LRCLK
1	0	I	MCLK input inverted
1	1	0	I2S_1 selected, external MCLK *256 = LRCLK
1	1	1	I2S_1 selected, external MCLK *256 = LRCLK
I	I	I	MCLK input inverted

7.16.3 Power Save Options

The bias current of the DAC block can be reduced in three steps down to 50% to reduce the power consumption with the register ibr_dac<1:0>.

7.16.4 Parameter

Table 66 - AudioDAC Parameter

PARAMETER	MIN	TYP	MAX	UNIT
ANALOG PERFORMANCE				
THD+Noise at FS		-85	-75	dB
Dynamic Range (20Hz-20kHz, -60dBFS) A-weighted	90	93		dB
Interchannel Mismatch			0.25	dB

Table 67 - I2S Parameter

I2S Inputs a	and Outputs VI2S=2.9V	MIN	ТҮР	MAX
VIL	SCLKx, LRCKx, SDIx (30%VI2S/2)	-	-	0.42V
VIH	SCLKx, LRCKx, SDIx (70%VI2S/2)	1.02V	-	VI2S

Register Definition	Add	Default	Content							
Name	r. ¹⁶	Delault	b7	b6	b5	b4	b3	b2	b1	b0
Audio Set1	57	00h			mclk_in vert	aud_ldo _on	gnd_sw _on	mux_sel	dac_on	lin_on
Audio Set2	58	00h	I2S_mcl k_en	I2S_sel ect	ibr_	hph		dith_on	ibr_	dac

Table 68 - Audio Register map

Table 69 - Low voltage Status register bit

Register Definition	Add	Default	Content							
Name	r . ¹⁷		b7	b6	b5	b4	b3	b2	b1	b0
Low voltage Status	47	40h	stpup1_ det	stpup1_ oc	hpdet	dig2_lv	dig1_lv	sd3_lv	sd2_lv	_sd1_lv

7.17 Line Input

7.17.1 General

AS3654 includes one stereo single ended inputs.

Table 70 - Line Inputs Parameter

PARAMETER	MIN	ТҮР	MAX	UNIT
ANALOG PERFORMANCE				
Rin		50		kOhm

7.18 Headphone Output

The headphone output is designed to provide the audio signal with $2x40mW \otimes 16\Omega$ or $2x20mW \otimes 32\Omega$, which are typical values for headphones.

This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain can be set from -40.5dB to +6dB.

7.18.1 Phantom Ground

HP_CM_PWR pin is the buffered HP_CM output. It can be used to drive the loads without external de-coupling capacitors between HPL / HPR and HPCM. If the load is between HPR / HPR and BVSS, 100uF of de-coupling capacitors are

¹⁶ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

¹⁷ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

needed. The phantom ground can be switched off to save power if not needed.

7.18.2 No-Pop Function

To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output stage is disabled. Also the volume settings are set to their default values, and can't be changed, as long the output stage is not enabled.

HP_CM pin, which needs a 100nF to 1uF capacitor outside, gets charged on power-up with 1uA to AVDD/2. After start-up the DC level of the following pins are the same: HPR=HPL=HP_CM=HP_CM_PWR=AVDD/2. The Start-up time before releasing mute is about 150ms. To avoid pop-noise 150ms discharging time of HP_CM after a shutdown, have to be waited before starting up again.

7.18.3 Over-current Protection

This output stage has an over-current protection, which disables the output for 256ms or 512ms. This value can be set in the headphone registers. The over-current protection limit of HPR and HPL pin is about 260mA while HP_CM_PWR pin has a 370mA limit.

7.18.4 Headphone Detection

With a control bit the headphone detection can be enabled. The detection is only working as long the headphone stage is in power down mode and the load is applied between HPR / HPL and HP_CM_PWR.

7.18.5 Power Save Options

To save power, especially when driving 32 Ohm loads, a reduction of the bias current can be selected.

Bias current reduction settings for headphone output:

00:0%

01:17%

10: 34%

11: 50%

Parameter

Table 71 - Power Amplifier Parameter

PARAMETER		MIN	ТҮР	MAX	UNIT
ANALOG PERFORMANCE					
R_Load at AOUTR and AOUTL single	16			Ohm	
Vout			1.13	Vp	
Gain Step Precision (RLmin-max,20Hz	-20kHz)		±0.5		dB
SINAD no load, LineIn-> HPH, A-wei	ighted		-97		dB
THD @ 1kHz, no load			-88		dB
THD @ 1kHz, 32Ohm, 10mW		-80		dB	
THD @ 1kHz, 32Ohm, 20mW		-74	-66	dB	
THD @ 1kHz, 160hm, 40mW		-68	-60	dB	
Channel Separation (320hm, dc-cou	ıpled)		60		dB
PSRR (200Hz-20kHz)		60	90		dB
Shorted Protection Level			260		mA
Shorted Protection Level of common mo	de buffer		370		mA
IOUT_powerdown		-20		20	μA
Tpower_up (HP_CM=0.1µF)			150		ms
	100Hz		50		
GND cancellation GND - AUDIO_GND to HP_R, HP_L no load	1kHz		50		dB
	10kHz		40		

7.18.6 Register Description

To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. Changing the bias current or the output driver strength is done via AudioSet2 register. All other headphone driver settings are controlled by the following two registers.

Right Headphone Register

The register is R/W; default value is 00h

Table	72 -	HPH	OUT	R	Register
iunic	<i>' L</i>	· · · · ·_	001_		negister

Bit	Symbol	Default	Description
76	hp_ovc_to		headphone over current time out:
			speaker over current time out:
			11: 0 ms
			10: 512 ms
			01: 128 ms
			00: 256 ms
5	hpcm_off		headphone phantom ground disable
	-	00h	0: normal operation
		0011	1: disable common mode buffer
40	hpr_vol		volume settings for right headphone output, adjustable in 32 steps @
			1.5dB
			00000: -40.5 dB gain
			00001: -39 dB gain
			11110: 4.5 dB gain
			11111: 6 dB gain

Left Headphone Register

The register is R/W; default value is 00h

Table 73 - HPH_OUT_L Register

Bit	Symbol	Default	Description
7	hp_mute		0: normal operation
			1: headphone output set to mute (mute is on during power-up)
6	hp_on		0: headphone stage not powered
	-		1: power up headphone stage
5	hpdeton		0: no headphone detection
			1: enable headphone detection
40	hpl_vol	00h	volume settings for left headphone output, adjustable in 32 steps @
			1.5dB
			00000: -40.5 dB gain
			00001: -39 dB gain
			11110: 4.5 dB gain
			11111: 6 dB gain

Table 74 – Headphone Register map

Register Definition Add Default Content			0	
	Register Definition	Add	Default	Content

¹⁸ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Name			b7	b6	b5	b4	b3	b2	b1	b0
HPH out R	59	00h	hp_ov	c_to	hpcm_off			hpr_vol		
HPH out L	60	00h	hp_mute	hp_on	hpdeton			hpl_vol		

7.19 Line Output

7.19.1 General

The line output is designed to provide the audio signal on 600 Ω min.

This output stage has an independent gain regulation for left and right channel with 32 steps @ 1.5dB each. The gain can be set from -40.5dB to +6dB.

7.19.2 No-Pop Function

To avoiding click and pop noise during power-up and shutdown, the output is automatically set to mute when the output stage is disabled. Also the volume settings are set to their default values, and can't be changed, as long the output stage is not enabled.

LINE_CM pin, which needs a 0.1μ F... 1μ F capacitor outside gets charged on power-up with 1uA to ALVDD/2. After start-up the DC level of the following pins are the same: LOUT_L=LOUT_R=LINE_CM= ALVDD/2. The Start-up time before releasing mute is about 150ms with 0.1μ F. To avoid pop-noise 150ms discharging time of LINE_CM after a shutdown, have to be waited before starting up again.

7.19.3 Power Save Options

To save power, a reduction of the bias current can be selected.

Table 75 - Line Power-Save Options

IBR_LINE	IDD_LINE (typ.)
0	2.2mA
1	1.5mA

7.19.4 Parameter

Table 76 - Line out	Block Characteristics
Tuble To Line out	DIOCK ONULUCIONSIICS

PARAMETER	MIN	TYP	MAX	UNIT	
ANALOG PERFORMANCE			•		
R_Load at LOUT_L and LOUT_R singl		600			Ohm
Gain Step Precision (RLmin-max,20Hz	-20kHz)		±0.5		dB
SINAD no load, LineIn-> Line out, A-w	eighted		-97		dB
THD @ 1kHz, no load			-88		dB
THD @ 1kHz, 600Ohm			-80		dB
PSRR (200Hz-20kHz)		60	90		dB
IOUT_powerdown		-20		20	μA
Tpower_up (C_LINECM=100nF)		150		ms
GND cancellation GND - AUDIO_GND to	100Hz		50		
LOUT_R, LOUT_L no load	1kHz		50		dB
	10k		40		

7.19.5 Register Description

To get an interrupt on an over-current event, the corresponding bit in the Interrupt enable register has to be set. All other Line/headphone driver settings are controlled by the following two registers.

Right Line Register

The register is R/W; default value is 00h

	Table // - LINE_OUT_R Register					
Bit	Name	Default	Description			
7,6	ibr_line<1:0>	00h	Bias current reduction settings for line output: 00: 0% 01: 17% 10: 34% 11: 50%			
5	-		reserved			
40	liner_vol		volume settings for right Line output, adjustable in 32 steps @ 1.5dB 00000: -40.5 dB gain 00001: -39 dB gain 11110: 4.5 dB gain 11111: 6 dB gain			

Table 77 - LINE_OUT_R Register

Left Line Register

The register is R/W; default value is 00h

Bit	Symbol	Default	Description
7	line_mute		0: normal operation 1: Line output set to mute (mute is on during power-up)
6	line_on		0: Line stage not powered 1: power up Line stage
5	-		reserved

40	linel_vol	volume settings for left Line output, adjustable in 32 steps @ 1.5dB 00000: -40.5 dB gain 00001: -39 dB gain

Table 79 – Lineout Register map

Register Definition	Add	Default	Content	Content								
Name	r. ¹⁹	Deladit	b7	b6	b5	b4	b3	b2	b1	b0		
Line out R	61	00h	ibr_	line				liner_vol				
Line out L	62	00h	line_mut e	line_on				linel_vol				

7.20 I²C Serial Interface

Table 80 – I2C SDA, SCL Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Note
VIL	SCL,SDA Low Level input voltage	-0.3		0.4	V	
Vih	SCL,SDA High Level input voltage	1.3		VSUPP LY	V	

Feature List

- Fast-mode capability (max. SCL-frequency is 400 kHz)
- 7+1-bit addressing mode
- 60h x 8-bit data registers (word address 0x00 0x60)
- Write formats: Single-Byte-Write, Page-Write
- Read formats: Current-Address-Read, Random-Read, Sequential-Read
- SDA input delay and SCL spike filtering by integrated RC-components

¹⁹ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Transfer Formats

Figure 24 – PC Byte-Write:

AS3654 device address write (DW):80h = 1000000b AS3654 device address read (DR): 81h = 1000001b

Figure 25 – PC Page-Write:

S	DW	A	WA	А	reg_data 1	A ↓	reg_data 2	A ↓		reg_data n	A ↓	Р
					write register WA++				e register WA++			e regis WA++

Byte-Write and Page-Write are used to write data to the slave.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be send to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read-Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

The diagrams below show various read formats available:

Figure *26 – PC Random-Read:*

S	DW	A	WA	A	Sr	DR	A ▲	data	N	Р
							rea	d register WA++	WA	++

Random-Read and Sequential-Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 27 – PC Sequential-Read:

read register

WA

Sequential-Read is the extended form of Random-Read, as more than one register-data bytes are transferred subsequently. In difference to the Random-Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the wordaddress counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

Figure 28 – PC Current-Address-Read:

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random-Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential-Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition.

7.21 Reset

XRESET is a low active bi-directional pin. An external pull-up to the periphery supply has to be added.

During each reset cycle the following states are controlled by the AS3654:

- Pin XRESET is forced to GND
- Programmable Power-off function
- Programmable Power-on sequence and regulator voltages
- Programmable reset timer
- All registers are set to their default values after power-on, except the reset control- and status-registers.

Note:

Programming is controlled by the internal Mask-PROM and the external resistor RPROGRAM

Symbol	Parameter	Min	Тур	Мах	Unit	Note
Vxreset_il	XRESET Low Level input voltage	-0.3		0.4	V	TBD
Vxreset_ih	XRESET High Level input voltage	1.3		VSUPPLY	V	TBD

Table 81 – XRESET, XON Characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Note
V _{XON_IL}	XON Low Level input voltage	-0.3		0.3*V2_5		
V _{XON_IH}	XON High Level input	0.7*V2_5		V2_5		
IXON_PUP	XON Pull up current		5		μA	

Reset Conditions

Reset can be activated from 7 different sources:

- Power on (battery or charger insertion)
- Low Battery
- Software forced reset
- Power off mode
- External triggered through the pin RESET
- Overtemperature
- Watchdog

Voltage detection:

There are two types of voltage dependent resets: V_{POR} and V_{XRESET} . V_{POR} monitors the voltage on V2_5 and V_{XRESET} monitors the voltage on VSUPPLY. The linear regulator for V2_5 is always on and uses the voltage VCHARGER, VBAT or V_USB as its source.

The pin RESET is only released if V2_5 is above VPOR and VSUPPLY is above VXRESETRISE.

Symbol	Parameter	Min	Тур	Мах	Unit	Note
VPOR	Overall power on reset	1.5	2.0	2.3	V	Monitor voltage on V2_5; power on reset for all internal functions
VXRESETRISE	Reset level for Vsupply rising		ResVoltr ise		V	Monitor voltage on Vsupply; rising level
	Reset level for Vsupply		2.7		V	Monitor voltage on VSupply; falling level
VARESETFALLING	falling		ResVotf all		V	if SupResEn=1 only
VRESETMASK	Mask time for VXRESET _{FALLING}	2.0	2.5	3.0	ms	Duration for VBAT <vxreset<sub>FALLING until a reset cycle is started²⁰</vxreset<sub>

Table 82 – Reset Levels

VRESET_{FALLING} is only accepted if the reset condition is longer than VRESET_{MASK}. This guard time is used to avoid a complete reset of the system in case of short drops of VBAT.

Power off:

To put the chip into ultra low power mode, write '1' into xon_enable and '1' into *power_off*. The chip waits until the external pin XON is pulled low, the charger is inserted or the level V_{POR} is reached to start a complete reset cycle. The bit *power_off* is automatically cleared by this reset cycle. During *power_off* state all circuits are shut-off except the Low Power LDO (V2_5). Thus the current consumption of AS3654 is reduced to less than 15µA. The digital part is supplied by V2_5, all other circuits are sturied off in this mode, including references and oscillator. Except the reset control registers all other registers are set to their default value after power-on.

²⁰ VRESET signal is debounced with the specified mask time for rising- and falling slope of VBAT.

Software forced reset

Writing '1' into the register bit force_reset immediately starts a reset cycle. The bit *force_reset* is automatically cleared by this reset.

External triggered reset:

If the pin XRESET is pulled from high to low by an external source (e.g. microprocessor or button) a reset cycle is started as well.

Overtemperature reset:

The reset cycle can be started by overtemperature conditions. See section 'Protection Functions'.

Watchdog reset:

If the watchdog is armed (register bit *wtdg_on* = 1 and *wtdg_res_on* = 1) and the timer expires it causes a reset. See section 'Watchdog'.

Reset Control Bits

Table 83 – Reset Register map

	······································										
Register Definition	Add	Default	Content								
Name	r. ²¹	Delault	b7	b6	b5	b4	b3	b2	b1	b0	
Reset Timer	22	ROM (0Fh)					xon_ena ble		res_timer		
Reset Control	72	00h			ı	reset_reaso	า	xon_inp ut	power_o ff	force_re set	

Table 84 – Reset Bit definitions

Name	Default	Access	Description
force_reset	0b	R/W	Setting to '1' starts a complete reset cycle
power_off	0b	R/W	Setting to '1' starts a reset cycle, but waits after the Reg_off state for a falling edge on the pin XON or until the charger is detected
xon_input	NA	R	This flag represents the state of the XON pad directly
xon_enable	ROM	R/W	This flag enables the XON pad and sets the power on state of the ASIC0XON pad disabled. Startup of chip; if VBAT>VRESETRISING1XON pad enabled. Startup of chip; if VBAT>VRESETRISING and XON=0

²¹ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Name	Default	Access	Description
reset_reason	NA	R	Flags to indicate to the software the reason for the last reset 000 V _{POR} has been reached (battery or charger insertion from scratch) 001 VRESET _{FALLING} was reached (battery voltage drop below 2.75V) 010 software forced by <i>force_reset</i> 011 software forced by <i>power_off</i> and XON was pulled low 100 software forced by <i>power_off</i> and charger was detected 101 external triggered through the pin RESET 110 reset caused by overtemperature T ₁₄₀ 111 reset caused by watchdog
res_timer	Boot- ROM	R/W	Set RESTIME 000 RESTIME=10ms 001 RESTIME=20ms 010 RESTIME=35ms 011 RESTIME=50ms 100 RESTIME=65ms 101 RESTIME=80ms 110 RESTIME=95ms 111 RESTIME=110ms

Reset Cycle

During a reset cycle the pin XRESET is forced to low for at least RES_{TIME} and all registers are set to their default values (except the bit ov_temp_140 and the Boot-Ctrl register). During the reset time a normal startup happens (see section 'Startup'), the reset is active until the reset timer (set by register bits *res_timer<2:0>*) expires. Then the voltage on the pin XRESET is pulled high by the external resistor and the whole system is leaving the reset state.

res_con: Reset Control

Reset is internally generated from a power supply supervisor and provided to internal logic as well as externally through the open-drain pad XRESET. At this point, it could be also forced externally from an external power supply supervisor. Additionally Reset can be forced by software.

7.22 Interrupt Controller

The interrupt controller generates an interrupt request for the host controller as soon as one or more of the bits in the *Interrupt* 1...2 register is set by pulling low pin XINT. All the interrupt sources can be enabled in the *Interrupt Mask* 1...2 register. The *Interrupt* 1...2 registers are cleared automatically after the host controller has read them. To prevent the AS3654 device from loosing an interrupt event, the register that is read is captured before it is transmitted to the host controller via the serial interface. As soon as the transmission of the captured value is complete a logical AND operation with the bitwise inverted captured value is applied to the register to clear all interrupt bits that have already been transmitted. Clearing the read interrupt bits takes 2 clock cycles, a read access to the same register before the clearing process has completed will yield a value of '0'. Note that an interrupt that has been present at the previous read access will be cleared as well in case it occurs again before the clearing process has completed.

During a read access to one of the interrupt registers the XINT pin will be released. As soon as the transferred bits of the interrupt register have been cleared the XINT pin will be pulled low in case a new interrupt has occurred in the meantime. By doing so the interrupt controller will work correctly with host controllers that are edge- and level-sensitive on their interrupt request input. Multiple byte read access is recommended to avoid reading the *Interrupt 1* register over and over again in response to a new interrupt that has occurred in the same register (and thus pulling low pin XINT) before the *Interrupt 2* register has been read.

Table 85 – Interrupt 1 Register

Address 1; Read only access; register is reset at power-on-reset and after each read access. Default value after reset: 00h.

Bit	Symbol	Default	Description
0	chstate_i	NA	Bit is set when the following status bits are set or reset: Trickle, CVM, NoBat
1	cheoc_i	NA	Bit is set when the EOC status bits are set or reset:
2	trickle_tmax_i	NA	Bit is set when trickle charge timeout has been expired
3	usb_chdet_i	NA	Bit is set when the USB_ChDet Bit is set or reset.
4	chdet_i	NA	Bit is set when the ChDet Bit is set or reset.
5	Onkey_i	NA	Bit is set when status XON bit is set or reset.
6	ovtmp_i	NA	Bit is set when the lower temperature threshold Temp ₁₁₀ of the temperature sensor is exceeded for longer than t _{RESMASK} .
7	Lowsup	0	Bit is set when the main supply voltage VSUPPLY has dropped below V _{RESFALL} for longer than t _{RESMASK} .

Table 86 – Interrupt 2 Register

Address 2; Read only access; register is reset at power-on-reset and after each read access. Default value after reset: 00h.

Bit	Symbol	Default	Description
0	sd1_lv_i	0	Bit is set when voltage of step down1 drops below low voltage threshold (1msec debounce time default)
1	sd2_lv_i	0	Bit is set when voltage of step down2 drops below low voltage threshold (1msec debounce time default)
2	sd3_lv_i	0	Bit is set when voltage of step down3 drops below low voltage threshold (1msec debounce time default)
3	dig1_lv_i	0	Bit is set when voltage of LdoDig1 drops below low voltage threshold (1msec debounce time default)
4	dig2_lv_i	0	Bit is set when voltage of LdoDig2 drops below low voltage threshold (1msec debounce time default)
5	hphcurr_i	0	Bit is set when output stage of headphone amplifier exceeds overcurrent limit.
6	hpdet_i	0	Bit is set when hp_det status bit is set or reset (1msec debounce time default)
7	stpup1_i	0	Bit is set when stpup1_oc or stpup1_det is set.

Table 87 – Interrupt mask 1 Register

Address 29; R/W access; register is reset at power-on-reset only. Default value after reset: FFh.

Bit	Symbol	Default	Description			
0	chstate_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
1	cheoc_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
2	trickle_tmax_int_ma sk	1b	0	Interrupt is enabled	1	Interrupt is disabled
3	usb_chdet_int_mas k	1b	0	Interrupt is enabled	1	Interrupt is disabled
4	chdet_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
5	onkey_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
6	ovtmp_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
7	LowSup_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled

Table 88 – Interrupt mask 2 Register

Address 30; R/W access; register is reset at power-on-reset only. Default value after reset: FFh.

Bit	Symbol	Default	Description			
0	sd1_lv_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
1	sd2_lv_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
2	sd3_lv_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled

Bit	Symbol	Default	Description			
3	dig1_lv_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
4	dig2_lv_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
5	hphcurr_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
6	hpdet_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled
7	stpup1_int_mask	1b	0	Interrupt is enabled	1	Interrupt is disabled

Table 89 – Low voltage status Register

Bit	Symbol	Default	Description
0	sd1_lv	0b	Step down1 low voltage status bit (-10% voltage drop)
1	sd2_lv	0b	Step down2 low voltage status bit (-10% voltage drop)
2	sd3_lv	0b	Step down3 low voltage status bit (-10% voltage drop)
3	dig1_lv	0b	Ldo Dig1 low voltage status bit (-50mV voltage drop)
4	dig2_lv	0b	Ldo Dig2 low voltage status bit (-50mV voltage drop)
5	hpdet	0b	Headphone detect status bit
6	stpup1_oc	0b	Bit is set by analog part, if overcurrent of DCDC StepUp1 occurs for more than 4msec(tbd)
7	stpup1_det	0b	Current Detection signal of step up 1

deb_time of low voltage and headphone detect and stpup1_oc and stpup1_det signal = 911μ Sec

Register Definition	Add	Default	Content								
Name	r.22	Delduit	b7	b6	b5	b4	b3	b2	b1	b0	
Interrupt Mask1	43	FFh	LowBat_ int_m	ovtmp_ int_m	onkey_ int_m	chdet_ int_m	usb_chd et_ int_m	trickle_t max_int _m	cheoc_i nt_m	chstate_ int_m	
Interrupt Mask2	44	FFh	stpup1_i nt_m	hpdet_in t_m	hphcurr _int_m	dig2_lv_ int_m	dig1_lv_ int_m	sd3_lv_i nt_m	sd2_lv_i nt_m	sd1_lv_i nt_m	
Interrupt Status1	45	NA	LowBat_ i	ovtmp_i	onkey_i	chdet_i	usb_chd et_i	trickle_t max_i	cheoc_i	chstate_ i	
Interrupt Status2	46	NA	stpup1_i	hpdet_i	hphcurr _i	dig2_lv_ i	dig1_lv_ i	sd3_lv_i	sd2_lv_i	sd1_lv_i	
Low voltage Status	47	40h	stpup1_ det	stpup1_ oc	hpdet	dig2_lv	dig1_lv	sd3_lv	sd2_lv	sd1_lv	

Table 90 – Interrupt Register map

²² Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.23 Startup

Normal Startup

During a normal reset cycle (see section Reset), but after V2_5 is above VPOR and Vsupply is above VRESET_{RISE} a normal startup happens:

- The external capacitor on CREF is charged to 1.8V (internal signal precharge_n, low active)
- The 3bit A/D conversion is performed (configuration: ratio of RBOOT/RBIAS, result→boot_ctrl<2:0>)
- Startup Statemachine reads out the internal Boot-ROM (address defined by *boot_ctrl*), Startsequence of Step-Down Converter and LDO's controlled by the Boot-ROM
- Reset-Timer is set by the Boot-ROM
- The reset is released when the Reset Timer expires (external pin XRESET)

7.23.1 Programmable Startup Sequences

see *austriamicrosystems AG* document *BootGen3654_2v0_050415.xls*

Startup from Charger

If the voltage on pin VCHARGER is within VSTART_{CHARGER}, the charger is started in any case (even with VBAT = 0V). This allows the battery to be charged (even from deep discharge) and finally a normal startup to happen.

 Table 91 – Charger Startup Conditions

Symbol	Parameter	Min	Тур	Max	Unit	Note
VSTARTCHARGER	Voltage on VCHARGER for system to start	4.0	5.0	15	V	on Pin VCHARGER

7.23.2 Protection Functions

All LDO's, the DCDC step up and DCDC step down have an integrated overcurrent protection. An overtemperature protection of the chip is also integrated which can be switched on with the serial interface signal temp_pmc_on. The chip has two signals for the serial interface: ov_temp_110 and ov_temp_140. The flag ov_temp_110 is automatically reset if the overtemperature condition is removed, whereas ov_temp_140 has to be reset by the serial interface with the signal rst_ov_temp_140.

If the flag ov_temp_140 is set, an automatic reset of the complete chip is initiated. The flag ov_temp_140 is not affected by this reset cycle allowing the software to detect the reason for this unexpected shutdown.

Symbol	Parameter	Min	Тур	Max	Unit	Note
T ₁₁₀	ov_temp_110 rising threshold	95	110	125	Degrees	
T ₁₄₀	ov_temp_140 rising threshold	125	140	155	Degrees	
T _{hyst}	ov_temp_110 and ov_temp_140 hystersis		5		Degrees	

Table 92 - Overtemperature Detection

Table 93 – Overtemperature detection Regsiter definitions

Register Definition	Add	Default	Content								
Name	r. ²³	Deldan	b7	b6	b5	b4	b3	b2	b1	b0	

²³ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence
Register Definition	Add	Default	Content							
Name	r. ²³	Delduit	b7	b6	b5	b4	b3	b2	b1	b0
Overtemperature Control	73	00h	tco_140 _a	tco_110 _a	temp_te st1	temp_te st0	rst_ov_t emp_14 0	ov_temp _140	ov_temp _110	temp_p mc_on

Table 94 – Overtermperature detection Bit definitions

Name	Default	Access	Description
temp_pmc_on	0	R/W	Switch on / off of temperature supervision; default: off – all other bits are only valid if set to '1'
ov_temp_110	NA	R	Flag that the overtemperature threshold 1 (T_{110}) has been reached
ov_temp_140	NA	R	Flag that the overtemperature threshold 2 (T_{140}) has been reached – this flag is not reset by a overtemperature caused reset and has to be reset by rst_ov_temp_140
rst_ov_temp_140	0	W	If the overtemperature threshold 2 has been reached, the flag ov_temp_140 is set and a reset cycle is started. ov_temp_140 should be reset by writing 1 and afterward 0 to rst_ov_temp_140
temp_test0	0	R/W	Only used for production test; always leave at '0'
temp_test1	0	R/W	Only used for production test; always leave at '0'
tco_110_a	NA	R	Only used for production test – direct output of T110 comparator
tco_140_a	NA	R	Only used for production test – direct output of T140 comparator

TMP_SV: Temperature Supervision

Comment: If one of the bits temp_test0 or temp_test1 is set, the output of the analog block tco_110_a and tco_140_a must be ignored.

A temperature sensor is implemented to provide over-temperature protection of the chip. It generates two flags linked to the two temperature thresholds (110 degrees, 140 degrees). Both thresholds have an hysteresis to prevent oscillation effects. First threshold (110 degrees) *tco_110_a* sets the flag *ov_temp_110*, signalling the serial interface part and software the 110 degrees overtemperature condition. Thus software can react and shuts down power consuming functions to decrease temperature.

Second threshold (140 degrees) *tco_140_a* activates *reset_140_n*, which activates XRESET within rescon: this sets all regulators into power-down mode and stops charging, and performs the reset cycle of the AS3654.

An additional function also implemented within tmp_sv is the generation of a rst_ov_temp_140 flag indicating, that a 140 degrees overtemperature condition caused the last reset of the digital part.

The signal *temp_pmc_on*=HIGH activates the temperature supervision.

rstovtemp_140 flag

In case of an activated reset (*resetpb_n* active), the system loses any information about the error which activated the reset state. Therefore, a flag is implemented, which indicates that the reset was caused by a reset_140_n activation. For the digital part, this flag is only resetable via the input signal rst_ovtemp_140:

- reset via signal rst_ovtemp_140
- set in case that reset_140_n goes active

7.23.3 Watchdog

The purpose of the watchdog is to detect a deadlock of the software. If the watchdog is active, it must become continuously a trigger signal within a programmable time window. If there is no signal anymore for a certain time period from a defined pad or

special serial interface bit, it starts either a complete reset cycle or changes the state of an output pin, which can be used e.g. as an interrupt to the processor.

The watchdog is highly configurable by the following register bits:

The complete block can be switched on by *wtdg_on* = 1 and off by by *wtdg_on* = 0.

The watchdog time window is defined by the register *wtdg_min_timer* and *wtdg_max_timer*.

The trigger signal can be configured by register *wtdg_trigger* and *wtdg_gpio_input*. (Pin CURR1-CURR4 (GPIO1-GPIO4) or register bit)

If the watchdog expires, the system can start automatically a reset cycle if wtdg_reset_on = 1

Any of the general purpose input / outputs can be configured to output the watchdog signal (see section "General Purpose Input and Outputs"). The Watchdog delivers a signal "wtdg_alarm", which is normal '0' and goes to '1' in the case of a timer-overflow. This signal can be used as e.g. a reset or interrupt for a processor.

Register Definition	Add	Default								
Name	r. ²⁴	Deldan	b7	b6	b5	b4	b3	b2	b1	b0
Watchdog Control	53	02h	wtdg_tri wtdg_re gger s_on wt					wtdg_on		
Watchdog_min Timer	54	00h	wtdg_min_timer							
Watchdog_max Timer	55	FFh	wtdg_max_timer							
Watchdog Software Signal	56	00h								wtdg_ sw_sig

Table 95 - Watchdog Regsiter definitions

Table 96 – Watchdog Bit definitions

Name	Default	Access	Description
wtdg_on	0b	R/W	Switches on the complete watchdog
wtdg_res_on	1b	R/W	If the watchdog expires and <i>wtdg_res_on</i> = 1 a reset cycle will be started – see section 'Reset'
wtdg_trigger	0b	R/W	 0 Use the register bit <i>wtdg_sw_signal</i> as trigger signal for the watchdog 1 Use the pin defined by <i>wtdg_gpio_input</i> as trigger signal for the watchdog
Wtdg_min_timer	(00)h	R/W	Defines the minimum watchdog trigger time (LSB=7.5ms, range: 0 – 1.9s)
Wtdg_max_timer	(FF)h	R/W	Defines the maximum watchdog trigger time (LSB=7.5ms, range: 7.5ms – 1.9s), do not set to (00)h
wtdg_sw_sig	0b	R/W	Trigger input by the serial interface if <i>wtdg_trigger</i> = 0

Figure 30 – Watchdog timing diagram

²⁴ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

7.23.4 Internal References (V, I, fclk)

The internal reference circuits needs the following external components:

Table 97 – Rrefernce External Components

Symbol	Parameter	Min	Тур	Мах	Unit	Note
Сехт	External filter capacitor	-10%	100	+10%	nF	Ceramic low-ESR capacitor between CREF and VSS

Table 98 – Refererences

Symbol	Parameter	Min	Тур	Мах	Unit	Note
VCEXT	Reference Voltage	-1%	1.8	+1%	V	Low noise trimmed voltage reference – connected to Pad CREF; do not load
Δf_{CLK}	Accuracy of Internal reference clock	-10		+10	%	Trimable by serial interface

To reduce the current consumption of the chip, the circuit can be set into a special low power mode with the serial interface bit 'low_power_on'. All specification parameters except the noise parameters are still valid for this mode.

Table 99 – Internal References Regsiter definitions

Register Definition	Add	Default	Content							
Name	r. ²⁵	Delault	b7	b6	b5	b4	b3	b2	b1	b0
References Control	52	Och						clk_int		low_pow er_on

Table 100 - Internal references Bit definitions

Name	Default	Access	Description
clk_int	Оb	R/W	Sets the internal CLK frequency used for fuel gauge, DCDCs, PWM, charge pump (000b) - 1.6 MHz (001b) - 1.7 MHz (010b) - 1.8 MHz (011b) - 1.9 MHz (100b) - 2.0 MHz (100b) - 2.1 MHz (110b) - 2.2 MHz (default) (111b) - 2.3 MHz All timings and delays are based on 2.2MHz clk_int
low_power_on	0b	R/W	0 Standard mode1 Low power mode – all specification except noise parameters are still valid

²⁵ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Additional Voltage ref (unfiltered, high impedance, not low noise): 10 mV resolution from 0 - 1.8 V with an accuracy of +/-1% (invalid if prechage_n = 0),

Current references: 1uA +/- 3% generated by a pmos from V2_5 (one for each analog block)

Low Power Mode

Use bit *low_power_on* (reg. References Control) to activate the Low Power Mode. In this mode the on-chip voltage reference and the temperature supervision comparators are operating in pulsed mode. This reduces the quiescent current of the AS3654 by 45µA (typ.). Because of the pulsed function some specifications are not fulfilled in this mode (e.g. increased noise), but still the full functionality is available.

Note: Low power mode can be controlled by the serial interface.

7.24 ON-Detect

The startup- and reset sequences of the device are highly configurable. The configuration of these sequences is defined by the ratio of the internal trimmed bias resistors and RPROGRAM. At the beginning of each reset cycle a 3 bit AD-conversion is performed. The result of this conversion is used to select 1 of 8 possible address-ranges of an internal mask-programmable ROM. The information that is stored in this ROM defines the following parameters:

- power-on sequence and voltage levels of 8 voltage regulators
- duration of the reset cycle (8 possible timer values)

The following values of R_{PROGRAM} are required to select the 8 possible address ranges:

000 open 001 320kΩ 010 160kΩ 011 80kΩ 100 40kO 101 20kΩ 10kΩ 110 111 0Ω

Register Definition	Add	Default	Content							
Name	r. ²⁶		b7	b6	b5	b4	b3	b2	b1	b0
Boot_status	74	NA					rom_ valid		rom_adr	

Table 102 - ON-Detect Bits definitions

Name	Default	Access	Description
rom_adr	(000)b	R	Boot-ROM address
rom_valid	0	R	If '1' Boot-ROM address is valid

²⁶ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

²⁷ Register address codes 00 – 31 are identical to Boot-ROM address codes

ROM-adr. 25-30...Power1 Control states at startup sequence

8.2 Packaging and Pinout

8.2.1 Pin Description

Table 113 - Pinlist CTBGA100,9x9mm (AS3654)

Pin	Name	Тур e	Supply	Description
	Charger			
K9	V_USB	Р		USB voltage supply input
K8	VSUP_USB	Р		Supply output of USB charger (connect to Vsupply)
H9	VCHARGER	Р		High voltage input coming from the charger; if the charger is used connect a ceramic capacitor of $1\mu\text{F}$
K10	VGATE	А		Switch ON control pin for the external PMOS Fet transistor of the charger step down converter
J10	VOFF_B	А		Switch OFF control pin for the external PMOS Fet transistor of the charger step down Buck converter
H10	VSS_CH	Р		Ground pad of Step down Charger
E9	VBAT_SW1	Р	VBAT	Battery switch input1 (battery side)
E10	VBAT_SW2	Р	VBAT	Battery switch input2 (battery side)
F10	VSUP_SW1	Р	Vsupply	Battery switch input1 (supply side)
D10	VSUP_SW2	Р	Vsupply	Battery switch input2 (supply side)
E6	BAT_SW	А		Battery switch output for external PMOS
J8	CH_SENSE_N	А	Vsupply	Charger step down converter, external shunt resistor negative connection
J9	CH_SENSE_P	А	Vsupply	Charger step down converter, external shunt resistor positive connection
G8	ISENSP	А	V2_5	Positive sensing input voltage for the external charging current shunt resistor
G7	ISENSN	А	V2 5	Negative sensing input voltage for the external charging current shunt resistor
	Serial interface			
A2	SCL	DI	(Vsupply)	SCL input in I ² C mode
A1	SDA	DIO	(Vsupply)	SDA input / output in I ² C mode
	Control interface			
C2	XRESET	OD	Vsupply	Bidirectional Reset Pin – add an external pullup resistor to the digital supply
C3	XINT	OD	Vsupply	Interrupt Pin - add an external pullup resistor to the digital supply
J2	XON	IPU	V2_5	Input pin to startup the system (power on), internal pullup, apply zenerzap- programming voltage here
	Internal Refs			
J7	VSUPPLY_5	Р		Supply for voltage Measurement, always connect to VSUPPLY
H8	V_BAT	Р	VBAT	Battery supply for Reference blocks.
H6	RPROGRAM	А	V2_5	Select register setup at startup.
G10	V2_5	Р		Internal regulator analogue output
F9	CREF	А	V2_5	Reference voltage bypass capacitor connection
F8	RBIAS	А	V2_5	Internal Bias Reference Resistor (connect 220k Ω resistor)
G9	GND_SENSE	Р	VSSA	GND reference for analog blocks (connect to GND plane separate)
H7	ADC_IN	А	V2 5	Analog input for ADC10
	Current Sinks	1	. –	
J4	CURR1	Α	VCURR	Current sink 1, or GPIO1
H4	CURR2	Α	VCURR	Current sink 2, or GPIO2
K3	CURR3	Α	VCURR	Current sink 3, or GPIO3
J3	CURR4	A	VCURR	Current sink 4, or GPIO4
K2	CURR5	A	VCURR	Current sink 5
K1	VCURR	A		Supply voltage of GPIOs and current sinks
H5	VSS_CURR	A	VCURR	Ground pad of Current sink
	General Purpose			

Pin	Name	Тур e	Supply	Description						
C1	VSUPPLY_4	Р		Supply for DCDC step up and control interface, always connect to VSUPPLY						
E4	DCDC_FB1	А	Vsupply	Step up DC/DC converter1 feedback input						
D2	DCDC_GATE1	А	Vsupply	Step up DC/DC converter1 control for external mosfet						
D3	DCDC_SENSE _P1	А	Vsupply	Step up DC/DC converter1 external shunt resistor positive connection						
F3	DCDC_SENSE _P2	А	Vsupply	Step up DC/DC converter2 external shunt resistor positive connection						
D4	DCDC_SENSE _N1	А	Vsupply	Step up DC/DC converter1 external shunt resistor negative connection						
E3	DCDC_SENSE _N2	А	Vsupply	Step up DC/DC converter2 external shunt resistor negative connection						
E2	DCDC_GATE2	А	Vsupply	Step up DC/DC converter2 control for external mosfet						
F4	DCDC_FB2	А	Vsupply	Step up DC/DC converter2 feedback input						
K4	DCDC_CURR1	А	Vsupply	Step up DC/DC converter2 current source 1						
J5	DCDC_CURR2	А	Vsupply	Step up DC/DC converter2 current source 2						
	Linear Regulator		•							
K6	VRF1_IN	Р	Vsupply	Supply Pad for RF1 LDO (RF_1), always connect to Supply>3.0V						
K5	VRF_1	A	VRF_IN	Output voltage of one of the RF LDO's; can be used as High-Side Switch, if used as LDO connect a ceramic capacitor of 1μ F (+/-20%) or 2.2μ F (+100%/-50%)						
J6	VRF2_IN	Р	Vsupply	Supply Pad for RF2 LDO (RF_1), always connect to Supply>3.0V						
K7	VRF_2	A	VRF_IN	Output voltage of one of the RF LDO's; can be used as High-Side Switch, if used as LDO connect a ceramic capacitor of 1μ F (+/-20%) or 2.2μ F (+100%/-50%)						
B7	VDIG1_IN	Р	Vsupply	Supply Pad for DIG1 LDO (VDIG_1)						
A7	VDIG_1	А	VDIG_IN	Output voltage of one of the DIG LDO's. Connect a ceramic capacitor of 1μ F (+/-20%) or 2.2 μ F (+100%/-50%)						
B6	VDIG2_IN	Р	Vsupply	Supply Pad for DIG2 LDO (VDIG_2)						
A6	VDIG_2	А	VDIG_IN	Output voltage of one of the DIG LDO's. Connect a ceramic capacitor of 1μ F (+/-20%) or 2.2 μ F (+100%/-50%)						
	Charge Pump									
B2	VCP_IN	Р	Vsupply	Supply Pad for Charge Pump, always connect to Supply>3.0V						
B4	VCP_N	А	Vsupply	HVS charge pump flying capacitor positive side						
B3	VCP_P	А		HVS charge pump flying capacitor negative side						
A4	VCP_OUT	А		Charge pump output, connect a ceramic capacitor of 2.2µF (+100%/-50%)						
A3	VSS_CP	А	Vsupply	Ground pad of charge pump						
	DCDC Step Dow	n								
D1	VSUPPLY_1	Р		Supply Pad for DCDC_Step down converter1, always connect to VSUPPLY						
F2	LX1	А	Vsupply	DC/DC step down converter1 output						
G4	FB1	А	Vsupply	DC/DC step down converter1 feedback						
E1	PGND1	А	Vsupply	Power Ground of DCDC step down converter1						
G1	VSUPPLY_2	Р		Supply Pad for DCDC_Step down converter2, always connect to VSUPPLY						
G2	LX2	А	Vsupply	DC/DC step down converter2 output						
G3	FB2	А	Vsupply	DC/DC step down converter2 feedback						
F1	PGND2	А	Vsupply	Power Ground of DCDC step down converter2						
H1	VSUPPLY_3	Р		Supply Pad for DCDC_Step down converter3, always connect to VSUPPLY						
H2	LX3	А	Vsupply	DC/DC step down converter3 output						
H3	FB3	А	Vsupply	DC/DC step down converter3 feedback						
J1	PGND3	А	Vsupply	Power Ground of DCDC step down converter3						
	Audio	_								
C10	VSUPPLY_6	Р		Supply for VI2S Regulator						
D5	VI2S	Р		Supply Pad for I2S Interface, Connect to VDAC Supply						
C6	SDI1	IPD	VI2S	I2S_1 Data input to DAC						

Pin	Name	Тур е	Supply	Description						
C5	SCLK1	IPD	VI2S	I2S_1 Shift clock						
D6	LRCLK1	IPD	VI2S	I2S_1 Left/Right clock						
C4	SDI2	IPD	VI2S	I2S_2 Data input to DAC						
A5	SCLK2	IPD	VI2S	I2S_2 Shift clock						
B5	LRCLK2	IPD	VI2S	I2S_2 Left/Right clock (or Master clock input for I2S1: DAC (128*Fsdac))						
F7	AGND	А	VDAC	CM voltage bypass capacitor connection (1.45V)						
E7	VREF	А	VDAC	VDAC voltage bypass capacitor connection (2.9V)						
E8	LINL	А	VDAC	Line input left channel.						
D9	LINR	А	VDAC	Line input right channel						
B1	GND_SW	0	Vsupply	Digital output for controlling the external NMOS						
A10	VDAC	А	VDAC	2.9V Output voltage of one of DAC LDO; Connect a ceramic capacitor of 1μ F (+/-20%) or 2.2 μ F (+100%/-50%)						
B9	HP_CM	А	AVDD	Bypass capacitor connection of common mode voltage of Audio headphone amplifier (AVDD/2)						
A9	HP_CM_PWR	А	AVDD	Buffered voltage of HP_CM						
C9	LINE_CM	А	ALVDD	Bypass capacitor connection of common mode voltage of Audio line out amplifier (ALVDD/2)						
D8	LOUT_L	А	ALVDD	Line out output Left channel						
C8	LOUT_R	А	ALVDD	Line out output Right channel						
C7	ALVDD	Р		Supply pad of Line out amplifier						
A8	AVDD	Р		Supply pad of headphone amplifier						
B8	HPL	А	AVDD	Headphone output left channel						
B10	HPR	А	AVDD	Headphone output right channel						
D7	BVSS	Р	AVDD	Power ground of headphone amplifier						
E5,F5, F6,G5 ,G6	VSSA	VSS		Analog Ground Pads						

Pin Types:

- I Digital Input Pin
- IPD Digital Input Pin with internal pull-down resistor
- IPU Digital Input Pin with internal pull-up resistor
- IODPU Digital Input / Open Drain Output Pin with internal pull-up resistor
- O Digital Output Pin
- OD Digital Open Drain Output Pin; requires external pull-up resistor
- IO Digital Input / Output Pin
- A Analogue Pin
- P Power Pin

8.3 Registermap

Table 114 – Registermap

Register Definition	Add	Default	Content									
Name	r. ²⁸	Delault	b7	b6	b5	b4	b3	b2	b1	b0		
Step Down Voltage1	00	ROM	sd1_clki nv	sd1_fre qu		step_down1_v						
Step Down Voltage2	01	ROM	sd2_clki nv	sd2_fre qu	step_down2_v							
Step Down Voltage3	02	ROM	sd3_clki nv	sd3_fre qu			step_d	own3_v				
LDO_RF1 Voltage	03	ROM		rf1_swpr ot_en	rf1_lcurr _en			ldo_rf1_v				
LDO_RF2 Voltage	04	ROM						ldo_rf2_v				
LDO_DIG1 Voltage	05	ROM					ldo_d	lig1_v				
LDO_DIG2 Voltage	06	ROM					ldo_d	lig2_v				
USB ChargerControl	07	ROM (52h)	ext_bats w_en	No_char ging	usb_prio	usb_chg En		usb_Curren	t			
ChargerControl1	08	ROM (41h)	lsolate_b at	Boost	trickle_t max	Pulse	Auto Resume	Fast	BatType	ChEn		
Battery voltage monitor	09	ROM (1dh)	SupRes En			ResVoltFall		ResVoltRise				
Charger Config	10	ROM (26h)		hVoltResum	ie	DisOWB	DisBDet	ChVoltEOC				
ChargerTiming	11	ROM (4bh)	TPOF	FMAX		TPOFF			TPON			
FuelGauge	12	ROM (01h)					CalMod	CalReq	UpdReq	FGEn		
ChargerCurrent	13	ROM (2Eh)		ch_voltage		Co	ConstantCurrent TrickleCurre			Current		
Charge Pump Control	14	ROM (00h)						cp_clkin v	cp_freq	cp_puls eskip		
Step Up DC/DC Control	15	ROM (00h)	stpup2_r es	stpup2_f astskip	stpup2_f req		stpup1_r es	stpup1_f astskip	stpup1_f req			
Step Up1 DC/DC Control	16	ROM (00h)		stpup1_ oc_time out	stpup1_ shortpro t	stpup1_ clkinv		stpu	p1_v			
Step Up2 DC/DC Control	17	ROM (00h)	stpup2_ prot	stpup2_ clkinv	stpuj	o2_fb		stpu	p2_v			
GPIO 1	18	ROM (07h)	gpio1	_pulls	gpio1_in vert	gpio	gpio1_iosf		gpio1_mode			
GPIO 2	19	ROM (07h)	gpio2_pulls		gpio2_in vert	gpio2_iosf		gpio2_mode				
GPIO 3	20	ROM (07h)	gpio3_pulls		gpio3_in vert	gpio3_iosf		gpio3_mode				
GPIO 4	21	ROM (07h)	gpio4_pulls		gpio4_in vert	gpio4_iosf		gpio4_mode				
Reset Timer	22	ROM (0Fh)				xon_ena ble		res_timer				
Reg Power1 Ctrl	23	ROM	cp_on	sd3_on	sd2_on	sd1_on	ldo_dig2 _on	ldo_dig1 _on	ldo_rf2_ on	ldo_rf1_ on		

²⁸ Register address codes 00 – 31 are identical to Boot-ROM address codes ROM-adr. 25-30...Power1 Control states at startup sequence

Register Definition	Add	d Default	Content									
Name r. ²⁸			b7	b6	b5	b4	b3	b2	b1	b0		
Reg Power1 Ctrl Startup 16msec	24- 30	ROM										
Reg Power2 Ctrl	31	ROM					stpup2_ on	stpup1_ on	rf2_sw	rf1_sw		
Step Down Control1	32	00h	sd2_nsw on	sd2_4u7	sd2_dis _n	sd2_ps w_on	sd1_ns w_on	sd1_4u7	sd1_dis _n	sd1_psw _on		
Step Down Control2	33	00h	sd3_dis_ pon	sd2_dis _pon	sd1_dis _pon	sdX_lpo	sd3_ns w_on	sd3_4u7	sd3_dis _n	sd3_psw _on		
Step down charger control	34	00h		sd3_dis _curmin	sd2_dis _curmin	sd1_dis _curmin				sdc_freq u		
DCDC_CURR1 value	35	00h		dcdc_cu rr1_low_ bias	_		dcdc_cur	r1_current				
DCDC_CURR2 value	36	00h		dcdc_cu rr2_low_ bias	dcdc_curr2_current							
CURR1 value	37	00h		curr1_lo w_bias			curr1_	current				
CURR2 value	38	00h		curr2_lo w_bias	curr2_current							
CURR3 value	39	00h		curr3_lo w_bias	curr3_current							
CURR4 value	40	00h		curr4_lo w_bias	curr4_current							
CURR5 value	41	00h		curr5_lo w_bias	curr5_current							
ADC idac	42	00h				•		adc	idac			
Interrupt Mask1	43	FFh	LowBat_ int_m	ovtmp_ int_m	onkey_ int_m	chdet_ int_m	usb_chd et_ int_m	trickle_t max_int _m	cheoc_i nt_m	chstate_ int_m		
Interrupt Mask2	44	FFh	stpup1_i nt_m	hpdet_in t_m	hphcurr _int_m	dig2_lv_ int_m	dig1_lv_ int_m	 sd3_lv_i nt_m	sd2_lv_i nt_m	sd1_lv_i nt_m		
Interrupt Status1	45	NA	LowBat_ i	ovtmp_i	onkey_i	chdet_i	usb_chd et_i	trickle_t max_i	cheoc_i	chstate_ i		
Interrupt Status2	46	NA	stpup1_i	hpdet_i	hphcurr _i	dig2_lv_ i	dig1_lv_ i	sd3_lv_i	sd2_lv_i	sd1_lv_i		
Low voltage Status	47	40h	stpup1_ det	stpup1_ oc	hpdet	dig2_lv	dig1_lv	sd3_lv	sd2_lv	sd1_lv		
GPIO Signal	48	NA	gpio4_in	gpio3_in	gpio2_in	gpio1_in	gpio4	gpio3	gpio2	gpio1		
PWM Frequency Control High Time	49	00h				pwm_	h_time					
PWM Frequency Control Low Time	50	00h				pwm_	I_time					
CURR control	51	00h			curr	5_ctrl	dcdc_c	urr2_ctrl	dcdc_c	urr1_ctrl		
References Control	52	0ch	(16 10)						low_pow er_on			
Watchdog Control	53	02h	wtdg_tri wtdg_re gger s_on wtdg_on									
Watchdog_min Timer	54	00h	wtdg_min_timer									
Watchdog_max Timer	55	FFh				wtdg_m	ax_timer					

Register Definition	Add	Default	Content							
Name	r. ²⁸	Delault	b7	b6	b5	b4	b3	b2	b1	b0
Watchdog Software Signal	56	00h								wtdg_ sw_sig
Audio Set1	57	00h			mclk_in vert	aud_ldo _on	gnd_sw _on	mux_sel	dac_on	lin_on
Audio Set2	58	00h	I2S_mcl k_en	I2S_sel ect	ibr_	hph		dith_on	ibr_	_dac
HPH out R	59	00h	hp_ovc_to f hpr_vol							
HPH out L	60	00h	hp_mute	hp_on	hpdeton			hpl_vol		
Line out R	61	00h	ibr_	line				liner_vol		
Line out L	62	00h	line_mut e	line_on				linel_vol		
ADC_control	63	00h	start_co nversion	adc_on		adc_slo w	adc_test		adc_select	
ADC_MSB result	64	NA	result_not _ready	D9	D8	D7	D6	D5	D4	D3
ADC_LSB result	65	NA				1	1	D2	D1	D0
ChargerStatus	66	NA		NoBat	EOC	CVM	Trickle	Resume	ChAct	ChDet
ChargerStatus_usb	67	NA					batsw_o n	batsw_ mode	USB_C hAct	USB_Ch Det
DeltaCharge _{MSB}	68	NA	sign	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
DeltaCharge LSB	69	NA	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
ElapsedTime _{MSB}	70	NA	2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
ElapsedTime _{LSB}	71	NA	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Reset Control	72	00h	reset_reason xon_inp power_o ut ff				force_re set			
Overtemperature Control	73	00h	tco_140 _a	tco_110 _a	temp_te st1	temp_te st0	rst_ov_t emp_14 0	ov_temp _140	ov_temp _110	temp_p mc_on
Boot_status	74	NA					rom_ valid		rom_adr	
Test_enable	75	00h				test_er	n_code			
Testmux Control N	76	00h						mux_ctrl_r	1	
Testmux Control P	77	00h						mux_ctrl_p		
Digital Testmux	78	00h			1	T			DigTestMux	(
Testmode control1	79	00h	serial_tm	NoRese t	zzap_for ce_read out	zzap_te stmode	quasitri men	digmux En	anamux En	atpg_ mode
Testmode control2	80	00h	rom_test	cp_tm	sdX_tm 2	sdX_tm 1	sdX_del 50	stpup_t m2	stpup_t m1	ext_clk
Testmode control3	81	00h	aud_rtm	adc3_tm	batsw_t m	ch_sdtm	aud_17d b_test	charger _dishyst	charger _tm	aud_ltm
Testmode idac	82	00h					<7:0>			
Testmode vsupply_l	83	00h				vsuppl	y<7:0>			
Testmode vsupply_h	84	00h						preset_ en	vsuppl	ly<9:8>
ASIC ID 1	85	NA	1	1	0	0	1	1	0	1
ASIC ID 2	86	NA	0	1	0	1		re	ev	
Zener Zap Isb	87	NA	RefOsc	1Mhz1			Vref_Trim			
Zener Zap msb	88	NA	smc_ihol d	smo	_ioff	smo	:_ion		VrefLpTrim	

Register Definition	Add	Default	Content								
Name	r. ²⁸	Delaun	b7	b6	b5	b4	b3	b2	b1	b0	
				Read Only							

	1	2	3	4	5	6	7	8	9	10
A	SDA	SCL	VSS_CP	VCP_OUT	SCLK2	VDIG2	VDIG1	AVDD	HP_CM_P WR	VDAC
В	GND_SW	VCP_IN	VCP_P	VCP_N	LRCLK2	VDIG2_IN	VDIG1_IN	HPL	HP_CM	HPR
С	VSUPPLY_ 4	XRESET	XINT	SDI2	SCLK1	SDI1	ALVDD	LOUT_R	LINE_CM	VSUPPLY_ 6
D	VSUPPLY_ 1	DCDC_GA TE1	DCDC_SE NSE_P1	DCDC_SE NSE_N1	VI2S	LRCLK1	BVSS	LOUT_L	LINR	VSUP_SW 2
Е	PGND1	DCDC_GA TE2	DCDC_SE NSE_N2	DCDC_FB 1	VSSA	BAT_SW	VREF	LINL	VBAT_SW 1	VBAT_SW 2
F	PGND2	LX1	DCDC_SE NSE_P2	DCDC_FB 2	VSSA	VSSA	AGND	RBIAS	CREF	VSUP_SW 1
G	VSUPPLY_ 2	LX2	FB2	FB1	VSSA	VSSA	ISENSEN	SENSEP	GND_SEN SE	V2_5
Н	VSUPPLY_ 3	LX3	FB3	CURR2	VSS_CUR R	RPROGRA M	ADC_IN	V_BAT	VCHARGE R	VSS_CH
J	PGND3	XON	CURR4	CURR1	DCDC_CU RR2	VRF2_IN	VSUPPLY_ 5	CH_SENS E_N	CH_SENS E_P	VOFF_B
К	VCURR	CURR5	CURR3	DCDC_CU RR1	VRF1	VRF1_IN	VRF2	VSUP_US B	V_USB	VGATE

8.4 Pinout Drawing (Top view) CTBGA100 9x9mm:

8.6 Package and Marking

8.6.1 CABGA100_9x9mm 0.8mm pitch(AS 3654)

BOTTOM VIEW 100 SOLDER BALLS