Features - · Low-voltage and Standard-voltage Operation - 5.0 (V_{CC} = 4.5V to 5.5V) - $-2.7 (V_{CC} = 2.7V \text{ to } 5.5V)$ - User Selectable Internal Organization - 16K: 2048 x 8 or 1024 x 16 - 3-wire Serial Interface - Sequential Read Operation - · Schmitt Trigger, Filtered Inputs for Noise Suppression - 2 MHz Clock Rate (5V) Compatibility - Self-timed Write Cycle (10 ms max) - High Reliability - Endurance: 1 Million Write Cycles - Data Retention: 100 YearsESD Protection: >4000V - Automotive Grade and Extended Temperature Devices Available - 8-pin PDIP, 8-pin JEDEC SOIC, and 8-pin TSSOP Packages ### Description The AT93C86 provides 16384 bits of serial electrically erasable programmable read only memory (EEPROM) organized as 1024 words of 16 bits each when the ORG Pin is connected to V_{CC} and 2048 words of 8 bits each when it is tied to ground. The device is optimized for use in many industrial and commercial applications where low power and low voltage operations are essential. The AT93C86 is available in space saving 8-pin PDIP, 8-pin JEDEC SOIC and 8-pin TSSOP packages. (continued) ## Pin Configurations | Function | |-----------------------| | Chip Select | | Serial Data Clock | | Serial Data Input | | Serial Data Output | | Ground | | Power Supply | | Internal Organization | | Don't Connect | | | # 3-wire Serial EEPROM 16K (2048 x 8 or 1024 x 16) # AT93C86 # Advanced Information Rev. 1237A-01/99 The AT93C86 is enabled through the Chip Select pin (CS), and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a READ instruction at DI, the address is decoded and the data is clocked out serially on the data output pin DO. The WRITE cycle is completely self-timed and no separate ERASE cycle is required before WRITE. The WRITE cycle is only enabled when the part is in the ERASE/WRITE ENABLE state. When CS is brought "high" following the initiation of a WRITE cycle, the DO pin outputs the READY/BUSY status of the part. The AT93C86 is available in 4.5V to 5.5V and 2.7V to 5.5V versions. #### **Absolute Maximum Ratings*** | Operating Temperature55°C to +125°C | |--| | Storage Temperature65°C to +150°C | | Voltage on any Pin with Respect to Ground1.0V to +7.0V | | Maximum Operating Voltage | | DC Output Current | #### *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability #### **Block Diagram** Note: 1. When the ORG pin is connected to V_{CC}, the x 16 organization is selected. When it is connected to ground, the x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device (of approximately 1 MΩ) will select the x 16 organization. # Pin Capacitance⁽¹⁾ Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0 MHz, $V_{CC} = +5.0V$ (unless otherwise noted). | Symbol | Test Conditions | Max | Units | Conditions | |------------------|--------------------------------|-----|-------|-----------------------| | C _{OUT} | Output Capacitance (DO) | 5 | pF | V _{OUT} = 0V | | C _{IN} | Input Capacitance (CS, SK, DI) | 5 | pF | V _{IN} = 0V | Note: 1. This parameter is characterized and is not 100% tested. #### **DC Characteristics** Applicable over recommended operating range from: T_{AI} = -40°C to +85°C, V_{CC} = +2.7V to +5.5V, T_{AC} = 0°C to +70°C, V_{CC} = +2.7V to +5.5V (unless otherwise noted). | Symbol | Parameter | Test Condition | Min | Тур | Max | Unit | | |--|--|----------------------------------|---------------------------|-------------------------------|-----|--|----| | V _{CC1} | Supply Voltage | | 2.7 | | 5.5 | ٧ | | | V _{CC2} | Supply Voltage | | | 4.5 | | 5.5 | V | | | Sunah Cumant | V 50V | READ at 1.0 MHz | | 0.5 | 2.0 | mA | | I _{CC} | Supply Current | V _{CC} = 5.0V | WRITE at 1.0 MHz | | 0.5 | 2.0 | mA | | I _{SB1} | Standby Current | V _{CC} = 2.7V | CS = 0V | | 6.0 | 10.0 | μΑ | | I _{SB2} | Standby Current | V _{CC} = 5.0V | CS = 0V | | 17 | 30 | μΑ | | I _{IL} | Input Leakage | $V_{IN} = 0V \text{ to } V_{CC}$ | | | 0.1 | 1.0 | μΑ | | I _{OL} | Output Leakage | $V_{IN} = 0V \text{ to } V_{CC}$ | | | 0.1 | 1.0 | μА | | V _{IL1} (1)
V _{IH1} (1) | Input Low Voltage
Input High Voltage | 4.5V ≤ V _{CC} ≤ 5.5V | | -0.6
V _{CC} x 0.7 | | V _{CC} x 0.3
V _{CC} + 1 | V | | V _{IL2} (1)
V _{IH2} (1) | Input Low Voltage
Input High Voltage | V _{CC} ≤ 2.7V | | -0.6
V _{CC} x 0.7 | | V _{CC} x 0.3
V _{CC} + 1 | V | | V _{OL1} | Output Low Voltage | 45020 2550 | I _{OL} = 2.1 mA | | | 0.4 | ٧ | | V _{OH1} | Output High Voltage | $4.5V \le V_{CC} \le 5.5V$ | I _{OH} = -0.4 mA | 2.4 | | | ٧ | | V _{OL2} | Output Low Voltage | V | I _{OL} = 0.15 mA | | | 0.2 | ٧ | | V _{OH2} | Output High Voltage V _{CC} ≤ 2.7V | | I _{OH} = -100 μA | V _{CC} - 0.2 | | | ٧ | Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested. # **AC Characteristics** Applicable over recommended operating range from T_A = -40°C to + 85°C, V_C = As Specified, CL = 1 TTL Gate and 100 pF (unless otherwise noted). | Symbol | Parameter | Test Condition | | Min | Тур | Max | Units | |--------------------------|-------------------------------|---|--|------------|-----|------------|--------------| | f _{SK} | SK Clock
Frequency | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | 0 | | 2
1 | MHz | | t _{skH} | SK High Time | $ 4.5V \le V_{CC} \le 5.5V $ $ 2.7V \le V_{CC} \le 5.5V $ | | 250
250 | | | ns | | t _{skL} | SK Low Time | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | 250
250 | | | ns | | t _{cs} | Minimum CS
Low Time | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | 250
250 | | | ns | | t _{css} | CS Setup Time | Relative to SK | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | 50
50 | | | ns | | t _{DIS} | DI Setup Time | Relative to SK | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | 100
100 | | | ns | | t _{csh} | CS Hold Time | Relative to SK | | 0 | | | ns | | t _{DIH} | DI Hold Time | Relative to SK | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | 100
100 | | | ns | | t _{PD1} | Output Delay to '1' | AC Test | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | | 250
250 | ns | | t _{PD0} | Output Delay to '0' | AC Test | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | | 250
250 | ns | | t _{SV} | CS to Status Valid | AC Test | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | | 250
250 | ns | | t _{DF} | CS to DO in High
Impedance | AC Test
CS = V _{IL} | $4.5V \le V_{CC} \le 5.5V$
$2.7V \le V_{CC} \le 5.5V$ | | | 100
100 | ns | | | Weite Coule Ti | | | 0.1 | | 10 | ms | | t _{WP} | Write Cycle Time | | 4.5V ≤ V _{CC} ≤ 5.5V | | 4 | | ms | | Endurance ⁽¹⁾ | 5.0V, 25°C, Page Mo | ode | | 1M | | | Write Cycles | Note: 1. This parameter is characterized and is not 100% tested. ## **Instruction Set for the AT93C86** | | | | Address | | D | ata | | |-------------|----|---------|----------------------------------|---|---------------------------------|----------------------------------|--| | Instruction | SB | Op Code | x 8 x 16 | | x 8 | x 16 | Comments | | READ | 1 | 10 | A ₁₀ - A ₀ | A ₉ - A ₀ | | | Reads data stored in memory, at specified address. | | EWEN | 1 | 00 | 11XXXXXXXX | 11XXXXXXXX | | | Write enable must precede all programming modes. | | ERASE | 1 | 11 | A ₁₀ - A ₀ | A _{9 -} A ₀ | | | Erases memory location A _n - A ₀ . | | WRITE | 1 | 01 | A ₁₀ - A ₀ | A ₉ - A ₀ | D ₇ - D ₀ | D ₁₅ - D ₀ | Writes memory location A _n - A ₀ . | 4 #### Instruction Set for the AT93C86 | | | | Address | | Da | ata | | |-------------|----|---------|------------|------------|---------------------------------|----------------------------------|---| | Instruction | SB | Op Code | x 8 | x 16 | x 8 | x 16 | Comments | | ERAL | 1 | 00 | 10XXXXXXXX | 10XXXXXXXX | | | Erases all memory locations. Valid only at $V_{\rm CC}$ = 4.5V to 5.5V. | | WRAL | 1 | 00 | 01XXXXXXXX | 01XXXXXXXX | D ₇ - D ₀ | D ₁₅ - D ₀ | Writes all memory locations. Valid when $V_{\rm CC}$ = 4.5V to 5.5V and Disable Register cleared. | | EWDS | 1 | 00 | 00XXXXXXXX | 00XXXXXXXX | | | Disables all programming instructions. | #### **Functional Description** The AT93C86 is accessed via a simple and versatile 3-wire serial communication interface. Device operation is controlled by seven instructions issued by the host processor. A valid instruction starts with a rising edge of CS and consists of a Start Bit (logic "1") followed by the appropriate Op Code and the desired memory Address location. **READ (READ):** The Read (READ) instruction contains the Address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the serial output pin DO. Output data changes are synchronized with the rising edges of serial clock SK. It should be noted that a dummy bit (logic "0") precedes the 8- or 16-bit data output string. **ERASE/WRITE (EWEN):** To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out. Please note that once in the Erase/Write Enable state, programming remains enabled until an Erase/Write Disable (EWDS) instruction is executed or V_{CC} power is removed from the part. **ERASE (ERASE):** The Erase (ERASE) instruction programs all bits in the specified memory location to the logical "1" state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "1" at pin DO indicates that the selected memory location has been erased, and the part is ready for another instruction. WRITE (WRITE): The Write (WRITE) instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP} , starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). A logic "0" at DO indicates that programming is still in progress. A logic "1" indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A READY/BUSY status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle, t_{WP} . **ERASE ALL (ERAL):** The Erase All (ERAL) instruction programs every bit in the memory array to the logic "1" state and is primarily used for testing purposes. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$. WRITE ALL (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the READY/BUSY status of the part if CS is brought high after being kept low for a minimum of 250 ns ($t_{\rm CS}$). The WRAL instruction is valid only at $V_{\rm CC} = 5.0V \pm 10\%$. **ERASE/WRITE DISABLE (EWDS):** To protect against accidental data disturb, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time. # **Timing Diagrams** # **Synchronous Data Timing** Note: 1. This is the minimum SK period. # **Organization Key for Timing Diagrams** | | AT93C86 (16K) | | | | | |----------------|-----------------|-----------------|--|--|--| | I/O | x 8 | x 16 | | | | | A _N | A ₁₀ | A_9 | | | | | D _N | D ₇ | D ₁₅ | | | | # **READ Timing** 6 #### **EWEN Timing** ## **EWDS Timing** ## **WRITE Timing** # WRAL Timing⁽¹⁾ Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V. ## **ERASE Timing** # **ERAL Timing**⁽¹⁾ Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V. # AT93C86 Ordering Information | t _{wP} (max)
(ms) | I _{CC} (max)
(μΑ) | I _{SB} (max)
(μA) | f _{MAX}
(kHz) | Ordering Code | Package | Operation Range | |-------------------------------|-------------------------------|-------------------------------|---------------------------|------------------|---------|-----------------| | 10 | 2000 | 30.0 | 2000 | AT93C86-10PC | 8P3 | Commercial | | | | | | AT93C86-10SC | 8S1 | (0°C to 70°C) | | | | | | AT93C86-10TC | 8T | | | | | 30.0 | 2000 | AT93C86-10PI | 8P3 | Industrial | | | | | | AT93C86-10SI | 8S1 | (-40°C to 85°C) | | | | | | AT93C86-10TI | 8T | | | 10 | 800 | 10.0 | 1000 | AT93C86-10PC-2.7 | 8P3 | Commercial | | | | | | AT93C86-10SC-2.7 | 8S1 | (0°C to 70°C) | | | | | | AT93C86-10TC-2.7 | 8T | | | | | 10.0 | 1000 | AT93C86-10PI-2.7 | 8P3 | Industrial | | | | | | AT93C86-10SI-2.7 | 8S1 | (-40°C to 85°C) | | | | | | AT93C86-10TI-2.7 | 8T | | | | Package Type | | | | | | | |---|--|--|--|--|--|--|--| | 8P3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) | | | | | | | | | 8S1 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) | | | | | | | | | 8T | 8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP) | | | | | | | | | Options | | | | | | | | Blank Standard Operation (4.5V to 5.5V) | | | | | | | | | -2.7 | -2.7 Low Voltage (2.7V to 5.5V) | | | | | | | # **Packaging Information** 8P3, 8-Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-001 BA 8S1, 8-Lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) Dimensions in Inches and (Millimeters) 8T, 8-Lead, 0.170" Wide Thin Shrink Small Outline Package (TSSOP) Dimensions in Millimeters and (Inches)* 0.09 (.004) *Controlling dimension: millimeters 10