

MSS1P2U, MSS1P3U

HALOGEN FREE

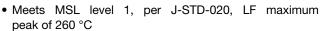
Vishay General Semiconductor

Ultra Low V_F Surface Mount Schottky Barrier Rectifiers

eSMP® Series

Bottom View MicroSMP

The ultra low V_F Schottky optimized for forward voltage drop with high reverse current trade-off.


PRIMARY CHARACTERISTICS				
I _{F(AV)}	1.0 A			
V _{RRM}	20 V, 30 V			
I _{FSM}	30 A			
V _F at I _F = 1.5 A	0.30 V			
T _J max.	125 °C			

APPLICATIONS

Application designed and qualified for hard disc driver where the V_F performance and size are required. HTIR is not a concern.

FEATURES

- Very low profile typical height of 0.65 mm
- · Ideal for automated placement
- Low forward voltage drop, low power losses
- Caution: High reverse leakage

- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21 definition

MECHANICAL DATA

Case: MicroSMP

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS compliant, and commercial grade

Terminals: Matte tin plated leads, solderable per

J-STD-002 and JESD 22-B102

M3 suffix meets JESD 201 class 1A whisker test Polarity: Color band denotes the cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)				
PARAMETER	SYMBOL	MSS1P2U	MSS1P3U	UNIT
Device marking code		12U	13U	
Maximum repetitive peak reverse voltage	V_{RRM}	V _{RRM} 20 30		V
Maximum average forward rectified current (fig. 1)	I _{F(AV)}	1.0		Α
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	30		А
Operating junction temperature range	TJ	- 55 to + 125		°C
Storage temperature range	T _{STG}	- 55 to + 150		°C

MSS1P2U, MSS1P3U

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT	
Maximum instantaneous forward voltage	$I_F = 0.5 A$	T _J = 25 °C		0.23	-		
	I _F = 1.0 A			0.30	-		
	I _F = 1.5 A		V (1)	V _E (1)	0.35	0.40	V
	I _F = 0.5 A	T _J = 85 °C	VF (**)	0.16	-	V	
	I _F = 1.0 A		T _J = 85 °C	0.24	-		
	I _F = 1.5 A			0.30	0.35		
Maximum reverse current	Rated V _R	$T_J = 25 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$	T _J = 25 °C	I _R ⁽²⁾	0.4	1.2	μΑ
	naieu v _R		IR (=)	12	30	mA	
Typical junction capacitance	4.0 V, 1 MHz		CJ	68	-	pF	

Notes

- · Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects.
- (1) Pulse test: 300 µs pulse width, 1 % duty cycle
- (2) Pulse test: Pulse width ≤ 40 ms

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)					
PARAMETER	SYMBOL	MSS1P3U	UNIT		
Timinal they week wesistened	R _{0JA} (1)	170	°C/W		
Typical thermal resistance	R _{eJM} (1)	30			

Note

(1) Free air, mounted on recommended copper pad area. Thermal resistance $R_{\theta JA}$ - junction to ambient, $R_{\theta JM}$ - junction to mount.

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
MSS1P3U-M3/89A	0.006	89A	4500	7" diameter plastic tape and reel	

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

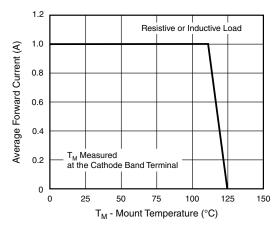


Fig. 1 - Maximum Forward Current Derating Curve

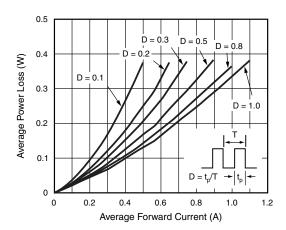


Fig. 2 - Forward Power Loss Characteristics

Vishay General Semiconductor

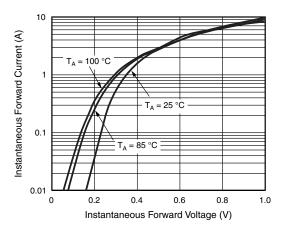


Fig. 3 - Typical Instantaneous Forward Characteristics

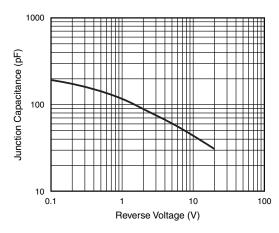


Fig. 5 - Typical Junction Capacitance

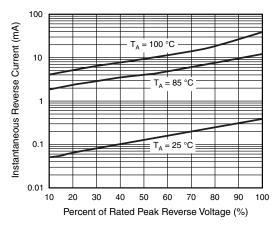


Fig. 4 - Typical Reverse Characteristics

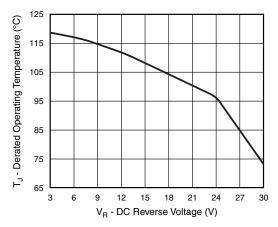
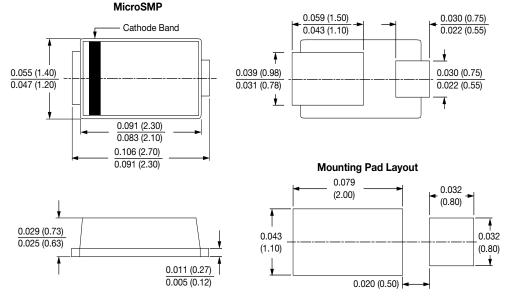



Fig. 6 - Typical Operating Temperature Derating

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Document Number: 89095 Revision: 19-Apr-11

For technical questions within your region, please contact one of the following: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11