

Click here to ask an associate for production status of specific part numbers.

Power-Management Solution

General Description

The MAX14720/MAX14750 are compact power-management solutions for space-constrained, battery-powered applications where size and efficiency are critical. Both devices integrate a power switch, a linear regulator, a buck regulator, and a buck-boost regulator.

The MAX14720 is designed to be the primary powermanagement device and is ideal for either non-rechargeable battery (coin-cell, dual alkaline) applications or for rechargeable solutions where the battery is removable and charged separately. The device includes a button monitor and sequencer.

The MAX14750 works well as a companion to a charger or PMIC in rechargeable applications. It provides direct pin control of each function and allows greater flexibility for controlling sequencing.

The devices include two programmable micro- I_Q , highefficiency switching converters: a buck-boost regulator and a synchronous buck regulator. These regulators feature a burst mode for increased efficiency during lightload operation.

The low-dropout linear regulator has a programmable output. It can also operate as a power switch that can disconnect the quiescent load of system peripherals.

The devices also include a power switch with batterymonitoring capability. The switch can isolate the battery from all system loads to maximize battery life when not operating. It is also used to isolate the battery-impedance measurements. This switch can operate as a generalpurpose load switch as well.

The MAX14720 includes a programmable power controller that allows the device to be configured either for use in applications that require a true off state or for always-on applications. This controller provides a delayed reset signal, voltage sequencing, and customized button timing for on/off control and recovery hard reset.

Both devices also include a multiplexer for monitoring the power inputs and outputs of each function.

These devices are available in a 25-bump, 0.4mm pitch, 2.26mm x 2.14mm wafer-level package (WLP) and operate over the -40° C to $+85^{\circ}$ C extended temperature range.

Benefits and Features

- Extended System Battery Use Time
 - Micro-I_Q 250mW Buck-Boost Regulator
 - Input Voltage from 1.8V to 5.5V
 - Output Voltage Programmable from 2.5V to 5V
 - 1.1µA Quiescent Current
 - Programmable Current Limit
 - Micro-I_Q 200mA Buck Regulator
 - Input Voltage from 1.8V to 5.5V
 - Output Voltage Programmable from 1.0V to 2.0V
 - 0.9µA Quiescent Current
 - Micro-I_Q 100mA LDO
 - Input Voltage From 1.71V to 5.5V
 - Output Programmable From 0.9V to 4.0V
 - 0. 9µA Quiescent Current
 - Configurable as Load Switch
- Extend Product Shelf-Life
 - Battery Seal Mode (MAX14720)
 - 120nA Battery Current
 - Power Switch On-Resistance
 - 250mΩ (max) at 2.7V
 - 500mΩ (max) at 1.8V
 - Battery Impedance Detector
- Easy-to-Implement System Control
 - Configurable Power Mode and Reset Behavior (MAX14720)
 - Push-Button Monitoring to Enable Ultra-Low Power Shipping Mode
 - Disconnects All Loads From Battery and Reduces Leakage to Less than 1µA
 - Power-On Reset (POR) Delay and Voltage Sequencing
 - Individual Enable Pins (MAX14750)
 - Voltage Monitor Multiplexer
 - I²C Control Interface

Applications

- Wearable Medical Devices
- Wearable Fitness Devices
- Portable Medical Devices

Ordering Information appears at end of data sheet.

19-7685; Rev 12; 1/22

Power-Management Solution

Absolute Maximum Ratings

(Voltages Referenced to GND.)							
BIN, LIN, SDA, SCL, SWIN, BEN, SWOUT, SWEN,							
LEN, HVEN, HVIN, HVOUT, MON, CAP, V _{CC} ,							
MPC, KIN, RST, KOUT0.3V to +6.0V							
HVILX0.3V to V _{HVIN} + 0.3V							
HVOLX0.3V to V _{HVOUT} + 0.3V							
BLX, BOUT0.3V to (V _{BIN} + 0.3V)							
LOUT0.3V to (V _{LIN} + 0.3V)							
GND0.3V to +0.3V							

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 25 WLP				
Package Code	W252M2+1			
Outline Number	<u>21-0788</u>			
Land Pattern Number	Refer to Application Note 1891			
THERMAL RESISTANCE, FOUR-LAYER BOARD				
Junction to Ambient (θ_{JA})	52.43°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Power-Management Solution

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY CURRENT						-
Seal Input Current	I _{SEAL}	Seal mode, all functions disabled		0.12	1	μA
Off Input Current	I _{OFF}	No blocks enabled, no battery measurement active		1.2	2.8	μA
MON Input Current	I _{MON}	No blocks enabled, no battery measurement active, MON enabled, MONCtr[2:0] = 000.		4	7.2	μA
Switch Input Current	I _{SW}	Switch enabled, I _{SWOUT} = 0A		1.2	2.8	μΑ
		LDO enabled, I _{LOUT} = 0A		2.1	4.4	
LDO Input Current	Current I _{LDO}	LDO enabled, LIN UVLO enabled, I _{LOUT} = 0A		2.4	4.8	μA
		LDO enabled, switch mode, I _{LOUT} = 0A		1.5	3.2	
Buck Input Current		Buck enabled, I _{BOUT} = 0A		2	4.1	
	Current I _{BUCK}	Buck enabled, BIN UVLO enabled, I _{BOUT} = 0A		2.2	4.5	μA
Buck-Boost Input Current		Buck-Boost enabled, I _{HVOUT} = 0A, V _{HVOUT} = 4V		2	4.7	
	IBCKBST	Buck-Boost enabled, BIN UVLO enabled, I _{HVOUT} = 0A, V _{HVOUT} = 4V		2.3	5	μΑ
On Input Current	ION	LDO, buck, and buck-boost enabled; BIN UVLO and LIN UVLO enabled; I _{SWOUT} = I _{LOUT} = I _{BOUT} = I _{HVOUT} = 0A		4.4	8.3	μA
POWER SEQUENCE						
Boot Time	tacer	MAX14720	9.9	11	12.1	ms
	e ^t BOOT	MAX14750	21.6	24	26.4	
Reset Time	t _{RST}	MAX14720	72	80	88	ms

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SWITCH	I	1				1
Input Voltage Range	V _{SWIN}	V _{SWIN} ≤ V _{CC}	1.8		5.5	V
Quiescent Supply Current	I _{Q_SW}	I _{SWOUT} = 0A		0.05	0.09	μA
Quitale On Desistance	P	I _{SWOUT} = 200mA		0.16	0.25	0
Switch On-Resistance	R _{ON_SW}	V _{SWIN} = 1.8V, I _{SWOUT} = 200mA		0.27	0.5	Ω
Maximum Output Current	ISWOUT_MAX		200			mA
Turn On Time		$I_{SWOUT} = 0mA, C_{SWOUT} = 100\mu F,$ time from 10% to 90% of V _{SWIN} , SWSoftStart = 0		0.65		ms
Turn-On Time	ton_sw	I_{SWOUT} = 0mA, C_{SWOUT} = 100µF, time from 10% to 90% of V _{SWIN} , SWSoftStart = 1		13.8		ms
Short-Circuit Current Limit	I _{SHRT_SW}	V _{SWOUT} = GND, SWSoftStart = 0	200	460	700	mA
Soft-Start Current Limit	I _{SSTR_SW}	V _{SWOUT} = GND, SWSoftStart = 1	9	25	54	mA
Thermal-Shutdown Threshold	T _{SHDN_SW}	T _J rising		150		°C
Thermal-Shutdown Hysteresis	T _{SHDN_HYST_SW}			20		°C
BUCK BOOST CONVER	RTER (C _{OUT} = 10MF, L	= 4.7MF, unless otherwise noted.)				
Input Voltage Range	V _{HVIN}		1.8		5.5	V
Quiescent Supply		V _{HVOUT} = 4V, I _{HVOUT} = 0A, BIN UVLO disabled		1.1	2.6	
Current	IQ_BOOST	V _{HVOUT} = 4V, I _{HVOUT} = 0A, BIN UVLO enabled		1.3	3	- μΑ
Minimum Input Voltage Startup	V _{HVIN_STUP}	I _{LOAD} = 1mA, minimum input voltage for correct startup of the buck-boost	1.9			V
Maximum Output Operating Power	PMAXHVOUT	V _{HVIN} = 3V	250			mW
Output Voltage	V _{HVOUT}	100mV step	2.5		5	V
Output Accuracy	ACC _{HVOUT}	I_{HVOUT} = 1mA, average output $C_{OUT} \ge 10 \mu F$	-3		+3	%
Line Regulation Error	V _{HVINREG_BOOST}	V _{HVIN} = 1.8V to 5.5V, I _{HVOUT} = 10uA, V _{HVOUT} = 4V, I _{SET} = 100mA	-1	0.1	+1	%/V

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Load Regulation Error	V. C. PPEG. POCOT	$V_{HVOUT} = 4V$, $I_{HVOUT} = 10\mu A$ to 50mA, $I_{SET} = 100mA$		100		mV/A	
	VLOADREG_BOOST	V _{HVOUT} = 4V, I _{HVOUT} = 10µA to 100mA, I _{SET} = 100mA		310		- mv/A	
Line Transient	VLINETRAN_BST	V_{HVOUT} = 4V, I _{SET} = 100mA, V_{HVIN} = V_{CC} = 2.5V to 5V, 0.2µs rise time		15		mV	
		I _{HVOUT} = 0mA to 10mA, 200ns rise time, V _{HVOUT} = 4V, I _{SET} = 100mA		9			
Load Transient	VLOADTRAN_BST	I _{HVOUT} = 0mA to 100mA, 200ns rise time, V _{HVOUT} = 4V, I _{SET} = 100mA		31		mV	
Oscillator Frequency	fosc_bst		1.78	2	2.25	MHz	
Passive Discharge Pulldown Resistance	R _{PDL_BST}		5	10	16	kΩ	
Active Discharge Current	IACTDL_BST	V _{HVIN} = 3V	6	19	38	mA	
Turn-On Time	^t ON_BOOST	Time from enable to full current capability		100		ms	
UVLO on HVOUT	VHVOUT_UVLO	UVLO voltage on HVOUT rising	1.6	1.75	1.9	V	
UVLO Threshold Hysteresis	V _{UVLO_HYS}			150		mV	
Precharge Current	IPC_BOOST	Precharge current. V _{HVIN} = 1.8V, V _{HVOUT} = 1.65V	4	6.5	9	mA	
Startup Input Current	IINSTUP_BST	Input startup current. V _{HVIN} = 1.8V, V _{HVOUT} = 1.6V		11		mA	
Startup Output Current	IOSTUP_BST	Output startup current. V _{HVIN} = 1.8V, V _{HVOUT} = 5V		6.5		mA	
Pulse Mode Input Current Limit	IPLS_IN	$V_{\text{HVOUT}} = 4V, V_{\text{HVIN}} < V_{\text{HVOUT}} - 0.5V, f_{\text{SW}} = f_{\text{OSC}}/10, \\ I_{\text{SET}} = 100\text{mA}$		6.6		mA	
Pulse Mode Switching Period Ratio	T _{RATIO}	f _{OSC} /f _{SW} , 128 steps	10		138		
Short-Circuit Peak Current Limit	ISHRT_BOOST	V _{HVOUT} = GND.	0.4	1.1	1.9	A	
Thermal-Shutdown Threshold	T _{SHDN_BST}	T _J rising		150		°C	
Thermal-Shutdown Hysteresis	T _{SHDN_HYST_BST}			21		°C	

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BUCK CONVERTER (C	_{OUT} = 10MF, L = 2.2MI	H, unless otherwise noted.)				_
Input Voltage Range	V _{BIN}		1.8		5.5	V
		I _{BOUT} = 0A		0.8	1.6	
Quiescent Supply Current	IQ_BUCK	I _{BOUT} = 0A, BIN UVLO enabled		1	2	- μΑ
ourone		I _{BOUT} = 0A, BuckMd[1:0] = 01			4.8	mA
Maximum Operative Output Current	IMAXBOUT		250			mA
Output Voltage	VBOUT	25mV step	1		2	V
Output Accuracy	ACC_BOUT	V _{BIN} = (V _{BOUT} + 0.1V) or higher, I _{BOUT} = 1mA; average output	-3		+3	%
Dropout Voltage	VDROP_BUCK	I _{BOUT} = 0A		95	120	mV
Line Regulation Error	VLINEREG_BUCK	V_{BIN} = from 2V to 5V, V_{BOUT} = 1.2V		0.65		%/V
Load Regulation Error	VLOADREG_BUCK	BuckInteg = 1, I _{BOUT} = 200mA		23		mV
Line Transient	V _{LINETRAN_BUCK}	V_{BOUT} = 1.2V, V_{BIN} = V_{CC} : 2.0V to 5V, 1 μs rise time		50		mV
Load Transient	VLOADTRAN_BUCK	I _{BOUT} = 0mA to 200mA, 200ns rise time		70		mV
Oscillator Frequency	fosc_вк		1.78	2	2.25	MHz
Passive Discharge Pull-Down Resistance	R _{PDL_BK}		5	10	16	kΩ
Active Discharge Current	IACTDL_BK		5.5	17	33	mA
T. 0. T.		Time from enable to full current capability; BuckFst = 0		60		
Turn-On Time	^t ON_BUCK	Time from enable to full current capability; BuckFst = 1		30		– ms
Startup Output Current	ISTUP_BK	BuckFst = 0		18		mA
Startup Output Current	I _{STUP_BK}	BuckFst = 1		42		mA
Short-Circuit Peak Current Limit	ISHRT_BUCK	V _{BOUT} = GND.	0.54	0.8	2.19	A
Thermal-Shutdown Threshold	T _{SHDN_BUCK}	TJ rising		150		°C
Thermal-Shutdown Hysteresis	T _{SHDN_HYST_BUCK}			21		°C

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LDO (C _{LOUT} = 1µF, unl	ess otherwise noted.	Typical values are with I _{LOUT} = 10m	A, V _{LOUT} =	= 2V)		
		LDO mode	1.71		5.5	
Input Voltage Range	V _{LIN}	Switch mode	1.2		5.5	- V
		I _{LOUT} = 0A		0.9	1.9	
Quiescent Supply Current	I _{Q_LDO}	I _{LOUT} = 0A, LIN UVLO enabled		1.1	2.2	μΑ
ourion		I _{LOUT} = 0A, switch mode		0.3	0.5	
Quiescent Supply Current in dropout	IQ_LDO_DRP	I _{LOUT} = 0A, V _{SET} = 2.8V		2.1	4.6	μA
Maximum Output		V _{LIN} > 1.8V	100			
Current	LOUT_MAX	V _{LIN} = 1.8V or lower	50			– mA
Output Voltage	VLOUT	100mV step	0.9		4	V
Output Accuracy	ACC _{LDO}	$V_{LIN} = (V_{LOUT} + 0.5V)$ or higher, I _{LOUT} = 1mA	-3.1		+3.1	%
Dropout Voltage	V _{DROP_LDO}	$V_{LIN} = V_{SET} = 2.7V,$ $I_{LOUT} = 100mA$			100	mV
Line Regulation Error	V _{LINEREG_LDO}	V _{LIN} = (V _{LOUT} + 0.5 V) to 5.5V	-0.5		+0.5	%/V
Load Regulation Error	VLOADREG_LDO	V _{LIN} = 1.8V or higher, I _{LOUT} = 100μA to 100mA		0.001	0.005	%/mA
Line Transient	VLINETRAN_LDO	V _{LIN} = 4V to 5V, 200ns rise time		±35		
Line Transient		V _{LIN} = 4V to 5V,1µs rise time		±25		– mV
Load Transient	VLOADTRAN_LDO	I _{LOUT} = 0mA to 10mA, 200ns rise time		100		– mV
		I _{LOUT} = 0mA to 100mA, 200ns rise time		200		
Passive Discharge Pulldown Resistance	R _{PDL_LDO}		4	10	18	kΩ
Active Discharge Current	IACTDL_LDO		5	20	40	mA
Switch Mode	Paula	V _{LIN} = 1.8V, I _{LOUT} = 50mA			1	0
Resistance	R _{ON_LDO}	V _{LIN} = 1.2V, I _{LOUT} = 5mA			3	Ω
Turn-On Time	ta	I _{LOUT} = 0mA , time from 10% to 90% of final regulation value		0.95		
	^t on_ldo	I _{LOUT} = 0mA , time from 10% to 90% of V _{LIN} , Switch mode		1.8		— ms
Short-Circuit Current	I _{SHRT_LDO}	V _{LOUT} = GND		380		
Limit		V _{LOUT} = GND, Switch mode		370		— mA

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN T	P MAX	UNITS
Thermal-Shutdown Threshold	^t SHDN_LDO	T _J rising	15	50	°C
Thermal-Shutdown Hysteresis	^t SHDN_HYST_LDO		2	1	°C
		10Hz to 100kHz, V_{LIN} = 5V, V_{LOUT} = 3.3V	15	50	
Output Nation		10Hz to 100kHz, V_{LIN} = 5V, V_{LOUT} = 2.5V	12	25	
Output Noise	OUT _{NOISE_LDO}	10Hz to 100kHz, V _{LIN} = 5V, V _{LOUT} = 1.2V	9	0	− µV _{RMS}
		10Hz to 100kHz, V _{LIN} = 5V, V _{LOUT} = 0.9V	8	0	
BATTERY IMPEDANCE	MEASUREMENT				
SWOUT Allowed Supply Range	V _{SWOUT}		2	5.5	V
SWOUT UVLO	UVLOSWOUT	Falling edge	1.92	2	V
SWOUT UVLO Hysteresis	U _{VLOHYST}	Hysteresis	3	0	mV
V _{CC} Impedance Test Current Range	I _{BIM_CUR}	Programmable current source with step change of 2x	250	8000	μΑ
V _{CC} Impedance Test Current Accuracy	IBIM_ACC	V _{CC} > 1.2V	-10	10	%
V _{CC} Input Divider Resistance	R _{VCC}	V _{CC} measure enabled	1.	.5	MΩ
Measurable V _{CC} Voltage Range	V _{CC_FS}	Allowed V _{CC} voltages range for SAR ADC operation	1.2	3.6	V
V _{CC} Voltage Resolution LSB	V _{CC_LSB}		10).2	mV
Worst-Case Accuracy		V _{CC} = 1.2V	-72	+72	
of Single V _{CC} Measurement	V _{CC_ACC}	V _{CC} = 3.6V	-100	+100	– mV
Worst-Case Accuracy		V _{CC1} -V _{CC2} = 100mV	-22	+22	
of Differential V _{CC} Measurement	V _{CC_ACC_DIFF}	V _{CC1} -V _{CC2} = 1.0V	-3.5	+3.5	- %
V _{CC} Voltage Wait Time Accuracy	^t WAIT_ACC	10ms, 100ms, 1s programmable ^t WAIT	-10	+10	%
SAR ADC V _{CC} Voltage Conversion Time	^t CONV	Actual full V _{CC} measurement time is $t_{WAIT} + t_{CONV}$	12	20	μs

Power-Management Solution

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MONITOR MULTIPLEXE	R					
SWIN To MON Switch Resistance	R _{MON_SWIN}	$V_{SWIN} > 1.8V$, $I_{LOAD} = 2mA$		80	120	Ω
SWOUT/BIN/HVIN/ HVOUT/LIN To MON Switch Resistance	R _{MON_HV}	Sensed pin voltage > 1.8V, I _{LOAD} = 500µA			400	Ω
LOUT/BOUT To MON Switch Resistance	R _{MON_LV}	Sensed pin voltage > 0.9V, I _{LOAD} = 500µA			500	Ω
BBM Time	t _{BBM}	Anytime MONCtr[2:0] changed		80		μs
Pulldown Resistance	R _{MON_PD}	MONHIZ = 0		100		kΩ
UVLO/POR	·					·
Input Voltage Range	V _{VCC}		1.8		5.5	V
BIN UVLO Threshold Rising	V _{TH_BIN_RISE}		1.68	1.73	1.77	V
BIN UVLO Threshold Falling	V _{TH_BIN_FALLING}		1.66	1.71	1.75	V
LIN UVLO Threshold Rising	VTH_LIN_RISE		1.64	1.68	1.72	V
LIN UVLO Threshold Falling	VTH_LIN_FALLING		1.62	1.66	1.7	V
		Seal mode	0.76	1.21		- V
POR Falling	VTH_POR_FALLING	No seal mode	1.55	1.66	1.77	
		Seal mode		1.27	1.71	- V
POR Rising	VTH_POR_RISING	No seal mode	1.58	1.69	1.8	v
DIGITAL SIGNALS (V _{CC}	= 1.8V to 5.5V, unles	s otherwise noted. Typical values a	are at V _{CC} =	2.7V.)		
Input Logic-High (SDA, SCL,SWEN,KIN, BEN,MPC,LEN,HVEN)	V _{IH}	No seal mode	1.4			V
Input Logic-Low (SDA, SCL,SWEN,KIN,	V _{IL}	No seal mode			0.45	
BEN,MP,LEN,HVEN)		No seal mode, V _{CC} ≥ 2.7V			0.5	V
Input Logic-High, Seal		Seal mode	4.1			V
Mode (SDA, SCL, \overline{KIN} , MPC)	VIH_SEAL	Seal mode, V _{CC} ≥ 2.7V	2.2			V

Power-Management Solution

Electrical Characteristics (continued)

 $(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V$, $T_A = -40^{\circ}C$ to +85°C, all registers in their default state, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Logic-Low, Seal Mode (SDA, SCL, KIN, MPC)	V _{IL_SEAL}	Seal mode			0.5	v
Output Logic-Low (SDA, RST, KOUT)	V _{OL}	I _{OL} = 4mA			0.4	v
SCL Clock Frequency	f _{SCL}		0		400	kHz
KIN Pullup Resistance	R _{KIN}			210		kΩ
Bus Free Time Between a Stop and Start Condition	t _{BUF}		1.3			μs
Start Condition (Repeated) Hold Time	^t HD:STA	(Note 2)	0.6			μs
Low Period of SCL Clock	t _{LOW}		1.3			μs
High Period of SCL Clock	^t HIGH		0.6			μs
Setup Time for a Repeated Start Condition	^t su:sta		0.6			μs
Data Hold Time	thd:dat	(Note 3)	0		0.9	μs
Data Setup Time	t _{SU:DAT}		100			ns
Setup Time for Stop Condition	tsu:sto		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{SP}		50			ns

Note 1: All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

Note 2: f_{SCL} must meet the minimum clock low time plus the rise/fall times.

Note 3: The maximum t_{HD:DAT} has to be met only if the device does not stretch the low period (t_{LOW}) of the SCL signal.

Power-Management Solution

Typical Operating Characteristics

(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V, T_A = +25°C, all registers in their default state, unless otherwise noted.)

Power-Management Solution

Typical Operating Characteristics (continued)

 $(V_{CC} = V_{BIN} = V_{LIN} = V_{HVIN} = V_{SWIN} = 2.7V, T_A = +25^{\circ}C$, all registers in their default state, unless otherwise noted.)

Power-Management Solution

Bump Configurations

Bump Description

BU	MP	NAME	FUNCTION
MAX14720	MAX14750	NAWE	FUNCTION
A1	A1	BIN	Buck Regulator Input (must be connected to HVIN on the board). Bypass with a $1\mu F$ capacitor to GND.
A2	A2	BLX	Buck Regulator Switch
A3	A3	BOUT	Buck Regulator Output. Bypass with a 10µF capacitor to GND.
A4	A4	LIN	LDO Input. Bypass with a 1µF capacitor to GND.
A5	A5	LOUT	LDO Output. Bypass with a 1µF capacitor to GND.
B1	B1	MON	Monitor Multiplexer Output
B2, B3, C2, C3, D2	B2, B3, C2, C3, D2	GND	Ground
B4	B4	V _{CC}	Power Supply Input
B5	B5	SWIN	Power Switch Input. SWIN ≤ V _{CC}
C1	C1	SDA	Open-Drain I ² C Serial Data Input/Output
C4	_	MPC	Multipurpose Control Input
_	C4	BEN	Active-High Buck Regulator Enable Input

BU	MP		FUNCTION
MAX14720	MAX14750	NAME	FUNCTION
C5	C5	SWOUT	Power Switch Output. Bypass with a 100µF capacitor to GND for battery impedance measurement.
D1	D1	SCL	I ² C Serial Clock
D3	_	KIN	KEY Input. Active-low button monitor with internal $210k\Omega$ pullup.
_	D3	SWEN	Active-High Power Switch Enable Input
D4		RST	Active-Low, Open-Drain Reset Output
_	D4	LEN	Active-High Linear Regulator Enable Input
D5	D5	CAP	Internal Power Decoupling. Bypass with a 0.1µF capacitor to GND.
E1	E1	HVOUT	Buck-Boost Regulator Output. Bypass with a 10µF capacitor to GND.
E2	E2	HVOLX	Buck-Boost Regulator Boost Switch
E3	E3	HVILX	Buck-Boost Regulator Buck Switch
E4	E4	HVIN	Buck-Boost Regulator Input (Must be Connected to BIN on the Board). Bypass with a $1\mu F$ capacitor to GND.
E5	_	KOUT	KEY Output. Active-low, open-drain buffered copy of KIN.
_	E5	HVEN	Active-High Buck-Boost Regulator Enable Input

Bump Description (continued)

Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical system operating conditions taking into consideration the effects of voltage and temperature.

Block Diagram

Power-Management Solution

Detailed Description

Power Regulation

The MAX14720/MAX14750 include a buck-boost regulator, a synchronous buck regulator, a low quiescent current linear regulator, and a power switch with integrated battery monitoring. Burst mode operation of the switching regulators provides excellent light-load efficiency and allows the switching regulators to run continuously without significant energy cost.

The buck-boost regulator in the devices is suitable for applications (such as low-power display biasing) that need the voltage present continuously while running from a battery. The buck-boost regulator can also operate in a current-limited mode to reduce current surges to the supply. The current-limiting is implemented by dividing down the frequency of the switching and is dependent on the ratio of the input-to-output voltage. Step-down operation is not allowed when current-limiting is active.

UVLO

In addition to the internal power-on-reset (POR) circuit, the devices also have two UVLO circuits that monitor the voltages on BIN and LIN pin to ensure that input voltages are sufficient for proper operation. It is required that the boost and buck-boost are powered from the same voltage so they share a UVLO on the BIN pin. The LDO has its own UVLO on the LIN pin. The UVLO circuits are disabled when the blocks are not enabled to reduce the quiescent current. The devices provide the ability to select which of the two UVLOs are used so that applications with BIN and LIN tied to the same supply can share a single UVLO to reduce quiescent current. The selection is made in the UVLOCfg register and the effects of the different settings are shown in the Table 1. In the MAX14720, if there is a fault in a block that is enabled by the sequencer (every _Seq[2:0] option except 000, 110 or 111) the part will transition to the shutdown state. The device then waits for the fault to clear before beginning the power on sequence. A fault is any condition that causes the block to turn off when it should be enabled, such as a UVLO condition or thermal shutdown. On MAX14720 versions with BatZUVLO enabled and SWSeq = 001 (always on), the load switch is kept on even in the event of a fault. This allows the device to recover from UVLO fault conditions when it is connected as shown in Figure 11. On devices with these options, in the case of a fault during the power sequencing, a retry counter is incremented. If seven failures in a row occur, retries are aborted and the device returns to OFF mode.

Output Discharge

The regulators include circuitry to discharge their outputs. Active discharge applies a current sink, while passive discharge applies a load resistor. The active discharge is enabled during hard reset, or for 10ms as the part enters the off/seal mode. It can also be activated in the on state by a register bit when the regulator is disabled. Passive discharge is applied in the off/seal mode if the GlbPasDsc bit is set and can also be applied in the on state by a register bit when the regulator is disabled.

Table 1. UVLO Configuration

UVLOCfg	BBBUVLOsel	LDOUVLOsel	BIN UVLO	LIN UVLO
0x00	LIN	LIN	Disabled	Enabled
0x01	LIN	BIN	Enabled	Enabled
0x02	BIN	LIN	Enabled	Enabled
0x03	BIN	BIN	Enabled	Disabled

Power On/Off and Reset Control

The MAX14750 provides individual enable pins for each of the primary functions, while the MAX14720 includes a push-button monitor and sequencing controller. Figure 1 shows the basic flow diagram for the power-management control inside the MAX14720. Each primary function of the MAX14720 can be automatically enabled by the sequencing controller. The functions can default to be controlled by the I²C configuration registers. The default state is determined by the factory configuration. See I<u>2C</u> <u>Register Descriptions</u> section for more information.

When the device begins the shutdown process, reset is driven low, all functions are disabled and outputs are actively discharged. Then, 10ms later, the device will be in the off state (seal mode) where all functions are disabled except for the power button monitor.

Power Sequencing

The sequencing of the voltage regulators during poweron is configurable. Each regulator can be configured to be turned on at one of four points during the power-on process. The four points are: t_{BOOT} after the power-on event, after the RST signal is released, or at two points in between. The two points in between are fixed proportionally to the duration of the POR process, but the overall time of the reset delay is configurable at 80ms, 120ms, 220ms, and 420ms. (Note that the actual turn-on time of some converters may be limited by the soft-starting of the output.) Figure 3 shows the timing relationship. Additionally, the

Figure 1. Power State Diagram for MAX14720

regulators can be preselected to default off and can be turned on with an I^2C command after reset is released.

Battery Impedance Measurement (MAX14720, BatZUVLO Enabled Only)

The MAX14720 contains circuitry to measure the impedance of the power supply. To perform this measurement, SWIN must be connected to V_{CC} , with no capacitor present on the battery-side; all loads draw their power from the power-switch output (see *Typical Application Circuits*).

By default, the power switch is configured with a soft-start current limit that prevents potential high current drawn from the battery. This soft-start lasts 60ms after the power switch is turned on.

During battery measurement, the impedance measurement circuitry will open the power switch and record the voltage at the input to the switch before and after a current load is applied. During the measurement, the system must rely on the energy stored in the capacitor attached to the output of the switch for operation. If the SWOUT voltage falls below SWOUT UVLO threshold, the battery measurement is immediately aborted and the power switch closes.

Figure 2. BatZUVLO enabled for MAX14720

Power-Management Solution

The parameters of the current load and the timing of the pulse are specified in registers BatTime(0x0D) and BatCfg(0x0E) when the measurement is requested and the results are presented in registers BatV(0x0F), BatOCV(0x10), and BatLCV(0x11) (see Figure 4). Battery impedance measurement is only available on devices with BatZUVLO enabled (see Table 27).

I²C Interface

The devices use the two-wire I²C interface to communicate with the host microcontroller. The configuration settings and status information provided through this interface are detailed in the register descriptions.

I²C Addresses

The registers of the devices are accessed through the slave address of 010101Ax (A is configurable by OTP).

Figure 3. Reset Sequence Programming (MAX14720)

Figure 4. Battery Impedance Measurement

I²C Register Map

	BO							BoostInd		BuckFst	BuckInteg		LDOMode	SWSoftStart	n[1:0]							v[1:0]*	RST/LEN	BuckFScl	StayOn	LDO UVLOsel		
	B1					Boost Set[2:0]	-	BoostEMI		ld[1:0]	BuckMinOT		n[1:0]	[1:0]	LCVTm[1:0]	BatImpCur[2:0]					MONCtr[2:0]	BootDly[1:0]*	MPC/BEN	BuckActDsc	1	BBBUVLOsel*		
-	B2	-		-	[0:		BoostVSet[4:0]		BuckVSet[5:0]	BuckMd[1:0]	BuckHysOff	LDOVSet[4:0]	LDOEn[1:0]	SWEn[1:0]	OCVTm[1:0]							PFNPUDCfg*	KOUT/HVEN	BuckPasDsc				lues
	B3	ChipId[7:0]*	ChipRev[7:0]*	Reserved	CIkDivSet[6:0]			BoostEn[1:0]	Buc	BuckEn[1:0]	BuckInd		LDO ActDSC		OCVT	LcvDly2Skip	BCV[7:0]*	OCV[7:0]*	LCV[7:0]*	Reserved	MONHIZ	SftRstCfg*	KIN /SWEN	I	I	I	PWROFFCMD[7:0]	Programmed Default OTP Values
	B4	Chi	Chip	Å				Boostl		BuckE	BuckCfg		LDO PasDSC		m[1:0]		BC	ŏ	FC	Å				I		I	PWRO	Programmed
-	B5	-													BCVTm[1:0]		-					[3:0]*	Ι	Boost ActDsc	I	l		
-	B6	-		-				BoostSeq[2:0]*		BuckSeq[2:0]*	BucklSet[2:0]		LDOSeq[2:0]*	SWSeq[2:0]*		BIMAbort**					1	PwrRstCfg[3:0]*		BoostPasDsc	GlbPasDsc*			
	B7				CIkDivEn								-			BIA**					MONEn			Boost HysOff	StartOff*	l		
	REGISTER NAME	Chipld	ChipRev	Reserved	BoostCDiv	BoostlSet	BoostVSet	BoostCfg	BuckVSet	BuckCfg	BucklSet	LDOVSet	LDOCfg	SwitchCfg	BatTime	BatCfg	BatBCV	BatOCV	BatLCV	Reserved	MONCfg	BootCfg	PinStat	BBBExtra	HandShk	UVLOCfg	PWROFF	ОТРМар
	REGISTER ADDRESS	00×00	0x01	0x02	0×03	0x04	0x05	0x06	0×07	0x08	60×0	0x0A	0x0B	0×0C	Ox0D	0×0E	0×0F	0x10	0x11	0x12-0x18	0x19	0x1A	0x1B	0x1C	0x1D	0x1E	0x1F	0x20 0x2B

Power-Management Solution

MAX14720/MAX14750

Note: All registers reset to default value on hard and soft reset. Reserved Bits: Must not be modified from their default states to ensure proper operation. Bolded Names: Bits default value can be factory configured by OTP. Bolded bits with asterisk are set by OTP only. *Read-only **Bits autoreset at the end of impedance measurement (either completed or aborted).

I²C Register Descriptions

Table 2. ChipId Register (0x00)

ADDRESS:	0x00 (Read-	x00 (Read-Only)										
BIT	7	7 6 5 4 3 2 1 0										
NAME				Chipl	d[7:0]							
Chip_Id[7:0]	Chip_Id[7:0]	bits show infor	mation about t	he version of t	he MAX14720	/MAX14750.						

Table 3. ChipRev Register (0x01)

ADDRESS:	0x01 (Read-	0x01 (Read-Only)										
BIT	7	7 6 5 4 3 2 1 0										
NAME				ChipR	ev[7:0]	` 						
ChipRev[7:0]	ChipRev[7:0]	ChipRev[7:0] bits show information about the revision of the MAX14720/MAX14750 silicon.										

Table 4. BoostCDiv Register (0x03)

ADDRESS:	0x03										
BIT	7	6	5	4	3	2	2 1				
NAME	ClkDivEn				ClkDivSet[6:0)]					
ClkDivEn	This allows th 0: Normal O 1: Divided C When the clo frequency. Th ClkDivSet[6:0	peration, Full (lock Current L ock divider is en ne peak curren 0]. The regulates below the out	ator to be open Dutput Curren mited Mode nabled, the bo t is set by Boo or will stop sw	rated in a curre t Capability post is operated pstISet[2:0] an itching when t	d the switching he voltage is a	but mode. beak current lin g frequency is o bove the set po d once the outp	determined by pint and will or	nly run when			
ClkDivSet[6:0]	When the cu		ode is enabled	d, the frequenc		regulator in cu [6:0]). The rang					

Table 5. BoostlSet Register (0x04)

ADDRESS:	0x04											
BIT	7	6	5	4	3	2	1	0				
NAME	_	BoostlSet[2:0]										
BoostlSet[2:0]			0									

Power-Management Solution

Table 6. BoostVSet Register (0x05)

ADDRESS:	0x05							
BIT	7	6	5	4	3	2	1	0
NAME	_	_				BoostVSet[4:0]	
BoostVSet[4:0]		linear scale, 1 V V		is internally la ents	tched and can	change only w	vhen boost is d	lisabled.

Table 7. BoostCfg Register (0x06)

ADDRESS:	0x06										
BIT	7	6	5	4	3	2	1	0			
NAME	Boost	Seq[2:0] (Read	d-only)	Boost	En[1:0]	_	BoostEMI	BoostInd			
BoostSeq[2:0]	Boost Enable Configuration (Read-Only) 000 = Disabled 001 = Reserved 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved 110 = Controlled by HVEN (MAX14750) 111 = Controlled by BoostEn [1:0] after 100% of Boot/POR Process Delay Control (MAX14720)										
BoostEn[1:0]	00 = Disable 01 = Enableo	d when MPC is	arge behavior	·		1)					
BoostEMI	0 = EMI dam	eduction. Damp pping active (im pping disabled	prove EMI)		/hen in discon	tinuous mode					
BoostInd	Boost Induct 1 = Inductan 0 = Inductan	ce is 3.3µH									

Power-Management Solution

Table 8. BuckVSet Register (0x07)

ADDRESS:	0x07							
BIT	7	6	5	4	3	2	1	0
NAME	—	_			BuckV	Set[5:0]		
BuckVSet[5:0]		linear scale, 2 00V 25V V	g This setting i 5mV incremer	is internally late	ched and can o	change only wh	nen buck is dis	abled.

Table 9. BuckCfg Register (0x08)

ADDRESS:	0x08													
BIT	7	6	5	4	3	2	1	0						
NAME	Buck	Seq[2:0] (Re	ead-only)	Buck	En[1:0]	Buck	Vd[1:0]	BuckFst						
BuckSeq[2:0]	000 = Dis. 001 = Res 010 = Ena 011 = Ena 100 = Ena 101 = Res 110 = Cor	Buck Enable Configuration (Read-Only) 000 = Disabled 001 = Reserved 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Reserved 110 = Controlled by BEN (MAX14750) 111 = Controlled by BuckEn [1:0] after 100% of Boot/POR Process Delay Control												
BuckEn[1:0]	00 = Disa 01 = Enat	bled. Active bled bled when M	discharge beha	only when Buc avior depends (,								
BuckMd[1:0]		t mode ed PWM mo ed PWM mo	de de when MPC	is high										
BuckFst		al startup cur		uce the startup	time by half									

Power-Management Solution

Table 10. BucklSet Register (0x09)

ADDRESS:	0x09							
BIT	7	6	5	4	3	2	1	0
NAME		BuckISet[2:0]		BuckCfg	BuckInd	BuckHysOff	BuckMinOT	BuckInteg
BucklSet[2:0]	Buck Peak 0 000: 50mA 001: 100mA 010: 150mA 011: 200mA 100: 250mA 101: 300mA 110: 350mA 111: 400mA	λ	tting					
BuckCfg		uration for burst mode for FPWM mode	e					
BuckInd	Buck Inducta 0 = Inductan 1 = Inductan	ice is 2.2µH						
BuckHysOff		esis Off comparator hyst comparator hys		mmended to re	educe voltage	e ripple)		
BuckMinOT		um On-Time leglitch delay oi deglitch delay o	•		•			
BuckInteg		abilize the buck	-	•		tput capacitor capacitance > 6µ	ıF)	

Table 11. LDOVSet Register (0x0A)

ADDRESS:	0x0A													
BIT	7	7 6 5 4 3 2 1 0												
NAME		LDOVSet[4:0]												
LDOVSet[4:0]		/ /) DmV incremen	ts										

Power-Management Solution

Table 12. LDOCfg Register (0x0B)

ADDRESS:	0x0B									
BIT	7	6	5	4	3	2	1	0		
NAME	LDOSe	q[2:0] (Read-0	Only)	LDOPasDsc	LDOActDsc	LDOEn[1:0] LDOM				
LDOSeq[2:0]	000 = Disabl 001 = Enable 010 = Enable 011 = Enable 100 = Enable 101 = Disabl 110 = Contro	LDO Enable Configuration (Read-Only) 000 = Disabled 001 = Enabled always when BAT/SYS is present 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = Disabled 110 = Controlled by LEN (MAX14750) 111 = Controlled by LDOEn[1:0] after 100% of Boot/POR Process Delay Control								
LDOPasDsc	0: LDO outpu	LDO Passive Discharge Control 0: LDO output will be discharged only entering off and hard-reset modes. 1: LDO output will be discharged only entering off and hard-reset modes and when the enable is low.								
LDOActDsc	0: LDO outpu		ly discharg	led only entering led only entering			when the ena	ble is low.		
LDOEn[1:0]	00 = Disable 01 = Enabled	d 1 1 when MPC is	-	nly when LDOSe	q[2:0] == 111)					
LDOMode	LDO Mode Control 0 = Normal LDO operating mode 1 = Load switch mode. FET is either fully on or off depending on the state of LDOEn. When FET is on, the output is unregulated and is not affected by UVLO's control block. This setting is internally latched and can change only when the LDO is disabled.									

Power-Management Solution

Table 13. SwitchCfg Register (0x0C)

ADDRESS:	0x0C								
BIT	7	6	5	4	3	2	1	0	
NAME	SWS	eq[2:0] (Read	-Only)	_	_	SWE	En[1:0]	SWSoftStart	
SWSeq[2:0]	000 = Disabl 001 = Enable 010 = Enable 011 = Enable 100 = Enable 101 = Disabl 110 = Contro	ed always whe ed at 0% of Bo ed at 25% of B ed at 50% of B ed ed olled by SWEN	en BAT/SYS is oot/POR Proce oot/POR Proce oot/POR Proc (MAX14750)	present ss Delay Contr ess Delay Con ess Delay Con % of Boot/POR	trol trol	y Control			
SWEn	00 = Disable 01 = Enable 10 = Enable	SW Enable Configuration (effective only when SWSeq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Enabled when MPC is high 11 = Reserved							
SWSoftStart	SW SoftStart 0 = No soft-start is present when the switch is enabled. 1 = Current limit of 25mA (typ) is ensured for 60ms when the switch is enabled.								

Table 14. BatTime Register (0x0D)

ADDRESS:	0x0D								
BIT	7	6	5	4	3	2	1	0	
NAME	_	_	BCVT	- m[1:0]	OCVT	- 「m[1:0]	LCVT	m[1:0]	
BCVTm[1:0]	Battery Cell Voltage Timing 00: Skip battery measurement 01: Take battery measurement after 10ms delay 10: Take battery measurement after 100ms delay 11: Take battery measurement after 1000ms delay								
OCVTm[1:0]	Battery Open Cell Voltage Timing If this step is skipped, LCV measurement will be taken with switch closed 00: Skip OCV measurement 01: Take OCV measurement after 10ms delay 10: Take OCV measurement after 100ms delay 11: Take OCV measurement after 1000ms delay								
LCVTm[1:0]	00: Skip LC 01: Take LC 10: Take LC	ed Cell Voltage / measuremer V measuremer V measuremer V measuremer	nt after 10ms o nt after 100ms	delay					

Table 15. BatCfg Register (0x0E)

ADDRESS:	0x0E	0x0E									
BIT	7	6	5	4	3	2	1	0			
NAME	BIA	BIMAbort	_	_	LcvDly2Skip		BatImpCur[2:0]				
BIA	Bit will remain 0: Battery imp		measurement	t is completed t ongoing	measurement is	already runr	ning, the write is	s ignored.			
BIMAbort	Write 1 to imr 0: Battery imp	dance Measure mediately abor pedance meas pedance meas	t the battery in urement is ab	orted	asurement						
LcvDly2Skip		ows V _{CC} to re d delay time	• • •	•	CVTm) after LCV fore closing the _l			s second			
BatimpCur [2:0]	Battery Imped 000: 0 001: 250µA 010: 500µA 011: 1mA 100: 2mA 101: 4mA 110: 8mA 111: Reserve	dance Current									

Table 16. BatV Register (0x0F)

ADDRESS:	0x0F (Read-	Only)								
BIT	7	7 6 5 4 3 2 1 0								
NAME		BCV[7:0]								
BCV[7:0]	8-bit battery v If BCVTm[2:0)] = 00, BCV[7	ent Result irement: V _{CC} = :0] = 0000 000 urement is abo	0.] V				

Table 17. BatOCV Register (0x10)

ADDRESS:	0x10 (Read-	0x10 (Read-Only)									
BIT	7	7 6 5 4 3 2 1 0									
NAME		OCV[7:0]									
OCV[7:0]	8-bit battery If OCVTm[2:0	0] = 00, OCV[7	ent Result rement: V _{CC} = 7:0] =0000 000 urement is abo	0.] V					

Table 18. BatLCV Register (0x11)

ADDRESS:	0x11 (Read-	0x11 (Read-Only)										
BIT	7	6	5	4	3	2	1	0				
NAME		LCV[7:0]										
LCV[7:0]	8 bit battery If LCVTm[2:0	ge Measureme voltage measu)] = 00, BCV[7 s or the measu	rement: V _{CC} = :0] = 0000 000	0.	- / -	V						

Table 19. MONCfg Register (0x19)

ADDRESS:	0x19									
BIT	7	6	5	4	3	2	1	0		
NAME	MonEn	_	_	_	MONtHiZ		MONCtr[2:0]			
MonEn	0 = Monitor f	Monitor Enable 0 = Monitor function disabled 1 = Monitor function enabled								
MONtHiZ		MON OFF MODE Condition 0 = Pulled Low by a 100k Pulldown Resistor 1 = Hi-Z								
MONCtr[2:0]	000 = MON 0 001 = MON 0 010 = MON 0 011 = MON 0 100 = MON 0 101 = MON 0 110 = MON 0	1 = Hi-Z MON Pin Source Selection 000 = MON connected to SWIN 001 = MON connected to SWOUT 010 = MON connected to BIN 011 = MON connected to BOUT 100 = MON connected to HVIN 101 = MON connected to HVOUT 110 = MON connected to HVOUT 110 = MON connected to LIN 111 = MON connected to LOUT								

Power-Management Solution

Table 20. BootCfg Register (0x1A)

ADDRESS:	0x1A (Read-	0x1A (Read-Only)										
BIT	7	6	5	4	3	2	1	0				
NAME		PwrRstCfg[4:0] SftRstCfg PFNPUDCfg BootDly[1:0]										
PwrRstCfg [4:0]		0000: Pin Controlled (MAX14750) 0110: Push-Button Monitor (MAX14720)										
SftRstCfg	0 = Registers	Soft Reset Register Default 0 = Registers do not reset to default values on soft reset 1 = Registers reset to default values on soft reset										
PFNPUDCfg	0 = Pullups a	ulldown Config and pulldowns pullups and p	on control line	s disabled bled on KIN pin								
BootDly[1:0]	Boot/POR Pr 00 = 80ms 01 = 120ms 10 = 220ms 11 = 420ms	rocess tRESET	Delay Contro	bl								

Table 21. PinStat Register (0x1B)

ADDRESS:	0x1B (Read-Only)									
BIT	7	6	5	4	3	2	1	0		
NAME (MAX14720)	_	—	_	_	KIN	KOUT	MPC	RST		
NAME (MAX14750)	_	—	_	_	SWEN	HVEN	BEN	LEN		
KIN, KOUT, MPC, RST, SWEN, HVEN, BEN, LEN	Input State 0 = Pin Iow 1 = Pin high									

Power-Management Solution

Table 22. BBBExtra Register (0x1C)

ADDRESS:	0x1C									
BIT	7	6	5	4	3	2	1	0		
NAME	BoostHysOff	BoostPasDsc	BoostActDsc	-	0	BuckPasDsc	BuckActDsc	BuckFScl		
BoostHysOff	0 = Enable co	Boost Hysteresis Off 0 = Enable comparator hysteresis 1 = Disable comparator hysteresis (recommended to reduce voltage ripple)								
BoostPasDsc	0: Boost outpu	Boost Passive Discharge Control D: Boost output will be discharged only when entering off and hard-reset modes. 1: Boost output will be discharged only when entering off and hard-reset modes and when BoostEn is set to 00.								
BoostActDsc	0: Boost outpu	Boost Active Discharge Control 0: Boost output will be discharged only when entering off and hard-reset modes. 1: Boost output will be discharged only when entering off and hard-reset modes and when BoostEn is set to 00.								
BuckPasDsc	0: Buck output	Discharge Contr t will be discharg t will be discharg	ed only when en			eset modes. eset modes and v	vhen BuckEn is	set to 00.		
BuckActDsc	0: Buck output	ischarge Control t will be discharg t will be discharg	-	-		eset modes. eset modes and v	vhen BuckEn is	set to 00.		
BuckFScl	0: FET Scaling	g only enabled du	uring the buck tu	rn-on sequ	ence	r to 20% of the no				

Table 23. HandShk Register (0x1D)

ADDRESS:	0x1D (Read-Only)									
BIT	7	6	5	4	3	2	1	0		
NAME	StartOff	GlbPasDsc	—	—	—	—	—	StayOn		
StartOff	Start In Off 1: The device will start in the off mode. 0: The device begins the power-on sequence after a V _{CC} power on reset.									
GlbPasDsc	Global Passive Discharge 0: Passive discharge loads are disabled in off mode. 1: Passive discharge loads are enabled in off mode.									
StayOn	Processor Handshake This bit is used to ensure that the processor booted correctly. This bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set. 0 = Shutdown 5s after power-on 1 = Stay on									

Power-Management Solution

Table 24. UVLOCfg Register (0x1E)

ADDRESS:	0x1E								
BIT	7	6	5	4	3	2	1	0	
NAME	_	—	_	_	_	_	BBBUVLOsel (Read Only)	LDOUVLOsel	
BBBUVLOsel	Buck/Buck-Boost UVLO Select 0: Buck and buck-boost are turned off/on when V _{LIN} is less/greater than the LIN UVLO threshold, respectively. 1: Buck and buck-boost are turned off/on when V _{BIN} is less/greater than the BIN UVLO threshold, respectively.								
LDOUVLOsel	LDO UVLO Select 0: LDO is turned off/on when V _{LIN} is less/greater than the LIN UVLO threshold, respectively. 1: LDO is turned off/on when V _{BIN} is less/greater than the BIN UVLO threshold, respectively.								

Table 25. PWRCFG Register (0x1F)

ADDRESS:	0x1F										
BIT	7	6	5	4	3	2	1	0			
NAME		PWROFFCMD[7:0]									
PWROFFCMD [7:0]	requires a lov			part in the off :	state/seal mod	e. Waking up t	he device from	ו this mode			

I²C Interface

The MAX14720/MAX14750 contain an I²C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

Start, Stop, And Repeated Start Conditions

When writing to the MAX14720/MAX14750 using I²C, the master sends a START condition (S) followed by the MAX14720/MAX14750 I²C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I²C slave. See Figure 5.

Table 26. I²C Slave Addresses

ADDRESS FORMAT	HEX	BINARY
7-Bit Slave ID	0x2A	0101010
Write Address	0x54	0101 0100
Read Address	0x55	01010101

Figure 5. I²C START, STOP, and REPEATED START Conditions

Slave Address

Set the Read/Write bit high to configure the devices to read mode (Table 26). Set the Read/Write bit low to configure the MAX14720/MAX14750 to write mode. The address is the first byte of information sent to the MAX14720/MAX14750 after the START condition.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the *Start, Stop, And Repeated Start Conditions* section). Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 6). The following procedure describes the single byte write operation:

- 1) The master sends a START condition
- 2) The master sends the 7-bit slave address plus a write bit (low)
- 3) The addressed slave asserts an ACK on the data line
- 4) The master sends the 8-bit register address
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not)
- 6) The master sends 8 data bits
- 7) The slave asserts an ACK on the data line
- 8) The master generates a STOP condition

Figure 6. Write Byte Sequence

Power-Management Solution

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (Figure 7). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation:

- 1) The master sends a START condition
- 2) The master sends the 7-bit slave address plus a write bit (low)
- 3) The addressed slave asserts an ACK on the data line
- 4) The master sends the 8-bit register address
- The slave asserts an ACK on the data line only if the address is valid (NAK if not)
- 6) The master sends eight data bits
- 7) The slave asserts an ACK on the data line
- 8) Repeat 6 and 7 N-1 times
- 9) The master generates a STOP condition

Single Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (<u>I2C Register Descriptions</u>). The following procedure describes the single byte read operation:

- 1) The master sends a START condition.
- 2) The master sends the 7-bit slave address plus a write bit (low).
- 3) The addressed slave asserts an ACK on the data line.
- 4) The master sends the 8-bit register address.
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- 6) The master sends a REPEATED START condition.
- 7) The master sends the 7-bit slave address plus a read bit (high).
- 8) The addressed slave asserts an ACK on the data line.
- 9) The slave sends eight data bits.
- 10) The master asserts a NACK on the data line.
- 11) The master generates a STOP condition.

Figure 7. Burst Write Sequence

Figure 8. Read Byte Sequence

Power-Management Solution

Burst Read

In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (Figure 9). The following procedure describes the burst byte read operation:

- 1) The master sends a START condition
- 2) The master sends the 7-bit slave address plus a write bit (low)
- 3) The addressed slave asserts an ACK on the data line
- 4) The master sends the 8-bit register address
- 5) The slave asserts an ACK on the data line only if the address is valid (NAK if not)
- 6) The master sends a REPEATED START condition
- 7) The master sends the 7-bit slave address plus a read bit (high)
- 8) The slave asserts an ACK on the data line
- 9) The slave sends eight data bits

- 10) The master asserts an ACK on the data line
- 11) Repeat 9 and 10 N-2 times
- 12) The slave sends the last eight data bits
- 13) The master asserts a NACK on the data line
- 14) The master generates a STOP condition

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the MAX14720/MAX14750 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (Figure 10). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

Figure 9. Burst Read Sequence

Figure 10. Acknowledge

Power-Management Solution

REGISTER BITS	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720F
BoostlSet[2:0]	100mA	100mA	100mA	100mA	100mA	150mA	100mA	100mA	350mA
BoostVSet[4:0]	3.3V	3.3V	3.3V	3.3V	3.3V	3.5V	3.3V	4.5V	3.2V
BBBUVLOSel	BIN	BIN	BIN	BIN	BIN	BIN	BIN	BIN	BIN
LDOUVLOSel	LIN	LIN	BIN	BIN	BIN	LIN	LIN	BIN	LIN
BuckVSet[5:0]	1.2V	1.8V	1.25V	1.2V	1.8V	1.2V	1.8V	1.8V	1.8V
BucklSet[2:0]	300mA	300mA	150mA	300mA	300mA	50mA	150mA	50mA	300mA
BuckCfg	Burst	Burst	Burst	Burst	Burst	Burst	Burst	Burst	Burst
BuckInd	2.2µH	2.2µH	2.2µH	2.2µH	2.2µH	2.2µH	2.2µH	2.2µH	2.2µH
BuckHysOff	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple
BuckMinOT	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple	Lower Ripple
BuckInteg	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC Accuracy	Higher DC accuracy	Higher DC accuracy
I2CAdd	0101010	0101010	0101010	0101010	0101011	0101010	0101011	0101011	0101011
StayOn	Stay On	Stay On	Stay On	Stay On	Stay On	Off after 5s	Stay On	Stay On	Stay On
LDOVSet[4:0]	1.8V	1.2V	1.8V	1.8V	1.8V	1.8V	1.8V	1.8V	1.8V
BoostSeq[2:0]	HVEN	HVEN	HVEN	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	BoostEn[1:0]	0%
BoostInd	4.7µH	4.7µH	4.7µH	4.7µH	4.7µH	4.7µH	4.7µH	4.7µH	4.7µH
BuckSeq[2:0]	BEN	BEN	BEN	50%	50%	25%	50%	50%	BuckEn[1:0]
BuckFst	Zero	Zero	Zero	Zero	Zero	Zero	Zero	Zero	Zero
LDOSeq[2:0]	LEN	LEN	LEN	50%	LDOEn[1:0]	50%	Always	LDOEn[1:0]	LDOEn[1:0]
LDOMode	LDO	LDO	LDO	LDO	Load Switch	LDO	LDO	Switch	Switch
SWSeq[2:0]	SWEN	SWEN	SWEN	0%	0%	0%	0%	Always	SWEn[1:0]
SWSoftStart	None	None	20mA (type) for 60ms	25mA (typ) for 60ms	25mA (typ) for 60ms	20mA (typ) for 60ms	20mA (typ) for 60ms	20mA (typ) for 60ms	20mA (typ) for 60ms
BCVTm[1:0]	Skip	Skip	Skip	Skip	Skip	Skip	Skip	10ms	Skip
OCVTm[1:0]	Skip	Skip	Skip	Skip	Skip	Skip	Skip	10ms	Skip
LCVTm[1:0]	Skip	Skip	Skip	Skip	Skip	Skip	Skip	10ms	Skip
LDOPasDSC	Off	Off	Off	Off	Off	Off	Off	Off	Off
LDOActDSC	Off	Off	Off	Off	Off	Off	Off	Active	Off
BatImpCur	0mA	0mA	0mA	0mA	0mA	0mA	0mA	8mA	0mA
PwrRstCfg[3:0]	Pin Enable	Pin Enable	Pin Enable	KIN	KIN	KIN	KIN	KIN	KIN
SftRstCfg	Hold Regs	Hold Regs	Reset Regs	Hold Regs					
PFNPUDCfg	Disabled	Disabled	Disabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
BootDly[1:0]	80ms	80ms	80ms	120ms	120ms	220ms	120ms	120ms	120ms
StartOff	Power On	Power On	Remain Off	Remain Off	Remain Off	Power On	Remain Off	Power On	Remain Off
GlbPasDsc	Disabled	Disabled	Disabled	Disabled	Disabled	Enabled	Disabled	Disabled	Disabled
BoostHysOff	More Efficient	More efficient	More efficient	More Efficient	More Efficient	More efficient	More efficient	More efficient	More efficient

Table 27. Register Bit Default Values

Power-Management Solution

REGISTER BITS	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720E
BoostPasDsc	Off								
BoostActDsc	Off	Active	Off						
BuckPasDsc	Off								
BuckActDsc	Off	Active	Off						
BuckFScl	Zero	One	One						
ClkDivEna	Disabled								
ClkDivSet[6:0]	0	0	0	0	0	0	0	0	0
BatZUVLO	Disabled	Enabled	Disabled						

Table 27. Register Bit Default Values (continued)

Table 28. Register Default Values

REGISTER	REGISTER			DE	FAULT VALU	ES				
ADDRESS	NAME	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720F
0x00	ChipId	0x01	0x01	0x01	0x01	0x01	0x01	0x01	0x01	0x01
0x01	ChipRev	0x01	0x01	0x01	0x01	0x01	0x01	0x01	0x02	0x01
0x02	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x03	BoostCDiv	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x04	BoostISet	0x02	0x02	0x02	0x02	0x02	0x03	0x02	0x02	0x07
0x05	BoostVSet	0x08	0x08	0x08	0x08	0x08	0x0A	0x08	0x14	0x07
0x06	BoostCfg	0xC0	0xC0	0xC0	0xE0	0xE0	0xE0	0xE0	0xE0	0x40
0x07	BuckVSet	0x08	0x20	0x0A	0x08	0x20	0x08	0x20	0x20	0x20
0x08	BuckCfg	0xC0	0xC0	0xC0	0x80	0x80	0x60	0x80	0x80	0xE0
0x09	BuckISet	0xA7	0xA7	0x47	0xA7	0xA7	0x07	0x47	0x07	0xA7
0x0A	LDOVSet	0x09	0x03	0x09	0x09	0x09	0x09	0x09	0x09	0x09
0x0B	LDOCfg	0xC0	0xC0	0xC0	0x80	0xE1	0x80	0x20	0xE9	0xE1
0x0C	SwitchCfg	0xC0	0xC0	0xC1	0x41	0x41	0x41	0x41	0x21	0xE1
0x0D	BatTime	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x19	0x00
0x0E	BatCfg	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x06	0x00
0x0F	BatBCV	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x10	BatOCV	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x11	BatLCV	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x12	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x13	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x14	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x15	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x16	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x17	Reserved	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x18	Reserved	0x34	0x34	0x34	0x34	0x34	0x34	0x34	0x34	0x34

Power-Management Solution

REGISTER	REGISTER REGISTER DEFAULT VALUES									
ADDRESS	NAME	MAX14750A	MAX14750B	MAX14750C	MAX14720A	MAX14720B	MAX14720C	MAX14720D	MAX14720E	MAX14720F
0x1A	BootCfg	0x00	0x00	0x08	0x65	0x65	0x66	0x65	0x65	0x65
0x1B	PinStat	0x00								
0x1C	BBBExtra	0x00	0x23	0x01						
0x1D	HandShk	0x01	0x01	0x81	0x81	0x81	0x40	0x81	0x01	0x81
0x1E	UVLOCfg	0x02	0x02	0x03	0x03	0x03	0x02	0x02	0x03	0x02
0x1F	PWROFF	0x00								

Table 28. Register Default Values (continued)

Typical Application Circuits

Figure 11. Lithium Coin Cell

Power-Management Solution

Typical Application Circuits (continued)

Figure 12. Removable Li+ Rechargeable

Power-Management Solution

Typical Application Circuits (continued)

Figure 13. Always-On Coin Cell

Power-Management Solution

Typical Application Circuits (continued)

Figure 14. Companion Li+ Rechargeable

Power-Management Solution

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX14720AEWA+	-40°C to +85°C	25 WLP
MAX14720AEWA+T	-40°C to +85°C	25 WLP
MAX14720BEWA+	-40°C to +85°C	25 WLP
MAX14720BEWA+T	-40°C to +85°C	25 WLP
MAX14720CEWA+	-40°C to +85°C	25 WLP
MAX14720CEWA+T	-40°C to +85°C	25 WLP
MAX14720DEWA+	-40°C to +85°C	25 WLP
MAX14720DEWA+T	-40°C to +85°C	25 WLP
MAX14720EEWA+	-40°C to +85°C	25 WLP
MAX14720EEWA+T	-40°C to +85°C	25 WLP
MAX14720FEWA+	-40°C to +85°C	25 WLP
MAX14720FEWA+T	-40°C to +85°C	25 WLP
MAX14750AEWA+	-40°C to +85°C	25 WLP
MAX14750AEWA+T	-40°C to +85°C	25 WLP
MAX14750BEWA+	-40°C to +85°C	25 WLP
MAX14750BEWA+T	-40°C to +85°C	25 WLP
MAX14750CEWA+	-40°C to +85°C	25 WLP
MAX14750CEWA+T	-40°C to +85°C	25 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Chip Information PROCESS: BICMOS

Power-Management Solution

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/15	Initial release	_
1	2/16	Worst-Case Accuracy of Single V _{CC} Measurement spec updated in Electrical Characteristics table	8
2	8/16	General updates	16, 21, 31–33
3	3/17	Updated Table 27, Table 28, and updated Ordering Informaiton table	31–33, 37
4	5/17	Removed future product designations for MAX14720CEWA+, MAX14720CEWA+T, MAX14720DEWA+, and MAX14720DEWA+T in <i>Ordering Informaiton</i> table	37
5	5/17	Removed future product designations for MAX14720BEWA+, MAX14720BEWA+T, MAX14750BEWA+, and MAX14750BEWA+T	37
6	10/17	Updated Tables 27 and 28, and added MAX14750CEWA+ and MAX14750CEWA+T as future products to the <i>Ordering Information</i> table.	32–33, 38
7	3/18	Updated the Ordering Information table.	38
8	7/18	Updated <i>Detailed Description</i> , Figure 1, Tables 27 and 28, Figure 11; added Figure 2 and renumbered figures; added MAX14720EEWA+ and MAX14720EEWA+T as future products to the <i>Ordering Information</i> table.	15–16, 32–34 38
9	8/18	Removed future product designation from MAX14720EEWA+ and MAX14720EEWA+T in the <i>Ordering Information</i> table.	39
10	4/19	Updated Figure 1 and 2; added overbar for KIN; moved "(MAX14720,BatZUVLO Enabled Only)" from <i>Power Sequencing</i> to <i>Battery Impedence Measurement</i> ; cor- rected Slave Address in Table 26	10, 16, 18, 27, 30
11	2/20	Updated Figures 1 and 2, Tables 24 and 27	16, 29, 33
12	1/22	Added MAX14720FEWA+ and MAX14720FEWA+T to the <i>Ordering Information</i> table, Table 27, and Table 28	33–35, 39

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implicationor otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.