# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **General Description**

The MAX98371 is a high-efficiency, mono Class D audio amplifier featuring Dynamic Headroom Tracking (DHT). DHT automatically optimizes the headroom available to the Class D amplifier as the power supply voltage varies, due to sudden transients and declining battery life to maintain a consistent listening experience. A wide 5.5V to 18V supply range allows the device to reach 19W into an  $8\Omega$  load.

The MAX98371's flexible digital audio interface (DAI) supports I<sup>2</sup>S, Left-Justified, and TDM formats. The digital audio interface accepts 32kHz, 44.1kHz, 48kHz, 88.2kHz, and 96kHz sample rates with 16-/24-/32-bit data supported for all data formats. In TDM mode, the device can support up to 16 channels of audio data. A unique clocking structure eliminates the need for an external MCLK signal that is typically needed for PCM communication. This reduces pin count and simplifys board layout.

Active Emissions Limiting (AEL) with edge rate control minimizes EMI, and eliminates the need for output filtering found in traditional Class D devices.

An 8-bit PVDD supply voltage ADC enables the Dynamic Headroom Tracking circuit. DHT optimizes audio program peak behavior as the supply voltage varies and provides flexible user-defined parameters.

Thermal foldback protection ensures robust behavior when the thermal limits of the device are exercised. The circuit can be enabled to automatically reduce the output power above a user specified temperature. This allows for uninterrupted music playback even at high ambient temperatures. Traditional thermal protection is also available in addition to robust overcurrent protection.

All MAX98371 control is performed using a standard 2-wire, I<sup>2</sup>C interface. One of sixteen slave addresses can be selected through two, four-level address pins. The IC is available in a 0.4mm pitch, 30-bump WLP package. It is specified over the extended, -40°C to +85°C temperature range.

#### **Applications**

- Tablets
- Notebook Computers
- Soundbars

#### **Benefits and Features**

- Wide Supply Range (5.5V to 18V)
- Dynamic Headroom Tracking Maintains a Consistent Listening Experience
- Integrated Thermal Foldback Allows Robust
   Operation in a WLP Package
- Remote Output Sensing Allows Up to 20dB THD+N Improvement When Ferrites Are Used
- Class D Edge Rate Control Enables Filterless Operation
- 110dB A-Weighted Dynamic Range
- Output Power at 1% THD+N:
  - 15.7W into 8Ω, V<sub>PVDD</sub> = 17V
  - 13.2W into  $4\Omega$ ,  $V_{PVDD} = 12V$
- Output Power at 10% THD+N
  - 19W into  $8\Omega$ , V<sub>PVDD</sub> = 17V
  - 15.8W into  $4\Omega$ ,  $V_{PVDD} = 12V$
- Speaker Amplifier Efficiency
- 91% at 10W into 8Ω, V<sub>PVDD</sub> = 12V
- 81% at 15W into  $4\Omega$ , V<sub>PVDD</sub> = 12V
- Extensive Click-and-Pop Suppression
- Space Saving, 30-Bump WLP Package (2.1mm x 2.6mm x 0.6mm, 0.4mm Pitch)

#### Simplified Block Diagram



Ordering Information appears at end of data sheet.



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| General Description                     | 1    |
|-----------------------------------------|------|
| Applications                            | 1    |
| Benefits and Features                   | 1    |
| Simplified Block Diagram                | 1    |
| Detailed Functional Diagram             | 6    |
| Absolute Maximum Ratings                | 7    |
| Package Thermal Characteristics         | 7    |
| Electrical Characteristics              | 7    |
| I <sup>2</sup> C Timing Characteristics | . 14 |
| Power Consumption                       | . 15 |
| Typical Operating Characteristics       | . 16 |
| Pin Configurations                      | . 23 |
| Pin Description                         | . 24 |
| Detailed Description                    | . 25 |
| Interrupts                              | . 29 |
| Status                                  | . 29 |
| State                                   | . 29 |
| Flag                                    | . 29 |
| Enable                                  | . 29 |
| Clear.                                  | . 29 |
| Digital Audio Interface.                | . 40 |
| Interface Format.                       | . 41 |
| Configuring the DAI Format              | . 41 |
| Configuring the Digital Audio Input     | . 42 |
| Digital Passband Filtering              | . 47 |
| Biquad Filter                           | . 48 |
| Signal Path Delay                       | . 48 |
| PVDD ADC                                | . 49 |
| Digital Volume Control                  | . 49 |
| Output Voltage Scaling                  | . 50 |
| Dynamic Headroom Tracking               | . 51 |
| DHT Ballistics                          | . 58 |
| Limiter                                 | . 61 |
|                                         |      |

#### **TABLE OF CONTENTS**

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| TABLE OF CONTENTS (continued)                |
|----------------------------------------------|
| Thermal ADC                                  |
| Thermal Protection                           |
| Thermal Foldback                             |
| DOUT Operation and Data format               |
| Interchip Communication                      |
| Multiamplifier Grouping                      |
| Double Data Drive.                           |
| Class D Output Stage                         |
| Ultra-Low EMI Filterless Output Stage71      |
| V <sub>DVDD</sub> and V <sub>PVDD</sub> UVLO |
| Click-and-Pop Suppression                    |
| Amplifier Current Limit                      |
| Thermal Shutdown Recovery                    |
| Output Sensing When Using Ferrites           |
| Clocking Architecture                        |
| Reset                                        |
| Hardware Reset                               |
| Software Reset                               |
| I <sup>2</sup> C Serial Interface            |
| Bit Transfer                                 |
| START and STOP Conditions                    |
| Early Stop Conditions                        |
| Slave Address                                |
| Acknowledge                                  |
| Write Data Format                            |
| Read Data Format                             |
| I <sup>2</sup> C Slave Addresses             |
| Applications Information                     |
| Layout and Grounding                         |
| WLP Applications Information                 |
| Typical Application Circuit                  |
| Ordering Information                         |
| Package Information                          |
| Revision History                             |

Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **LIST OF FIGURES**

| Figure 1. I <sup>2</sup> S Audio Interface Timing Diagram                         | 13  |
|-----------------------------------------------------------------------------------|-----|
| Figure 2. Left-Justified Audio Interface Timing Diagram                           | 13  |
| Figure 3.TDM Audio Interface Timing Diagrams                                      | 13  |
| Figure 4. I <sup>2</sup> C Interface Timing Diagram                               | 14  |
| Figure 5. I <sup>2</sup> S Digital Audio Format Examples                          | 44  |
| Figure 6. Left-Justified Digital Audio Format Examples                            | 45  |
| Figure 7. TDM Digital Audio Format Examples                                       | 46  |
| Figure 8. Example of Dynamic Headroom Tracking in Mode 1 Operation                | 51  |
| Figure 9. Example of Dynamic Headroom Tracking in Mode 2 Operation with a High RP | 52  |
| Figure 10. Example of Dynamic Headroom Tracking in Mode 2 Operation with a Low RP | 53  |
| Figure 11. Example of Dynamic Headroom Tracking in Mode 3a Operation              | 55  |
| Figure 12. Example of Dynamic Headroom Tracking in Mode 3b Operation              | 56  |
| Figure 13. Example of Dynamic Headroom Tracking in Mode 3b with Limiter           | 57  |
| Figure 14. Dynamic Headroom Tracking Attack functionality                         | 58  |
| Figure 15. Thermal Foldback performance                                           | 63  |
| Figure 16. DOUT data structure                                                    | 64  |
| Figure 17. Single Data Drive                                                      | 66  |
| Figure 18. Double Data Drive illustration                                         | 66  |
| Figure 19. Typical Application Circuit with Ferrites Beads Used                   | 72  |
| Figure 20 .THD Performance Improvement Enabled by Remote Sensing                  | 72  |
| Figure 21. START, STOP, and REPEATED START Conditions                             | .74 |
| Figure 22. Acknowledge                                                            | 75  |
| Figure 23. Writing One Byte of Data to the MAX98371                               | 75  |
| Figure 24. n-Bytes of Data to the MAX98371                                        |     |
| Figure 25. Reading One Byte of Data from the MAX98371                             | 76  |
| Figure 26. Reading n-Bytes of Data from the MAX98371                              | 76  |
| Figure 27. MAX98371+ WLP Ball Dimensions.                                         | 78  |

#### LIST OF TABLES

| Fable 1. MAX98371 Control Register Map                    | . 25 |
|-----------------------------------------------------------|------|
| Fable 2. Interrupt Sources                                | . 29 |
| Fable 3. Interrupt Registers                              | . 30 |
| Fable 4. Supported Sample Rates                           | . 40 |
| Table 5. Supported BCLK Rates in Slave Mode               | . 40 |
| Fable 6. Configuration for Digital Audio Interface Format | 41   |

Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| LIST OF TABLES (CONTINUED)                                               |
|--------------------------------------------------------------------------|
| Table 7. Configuration for Digital Audio Interface Format                |
| Table 8. TDM Channel Selection for Mono Replay       44                  |
| Table 9. Digital Highpass Filter    47                                   |
| Table 10. Biquad Filter Coefficient Registers.         48                |
| Table 11. Signal Path Delay    48                                        |
| Table 12. PVDD Measurement ADC    49                                     |
| Table 13. Digital Volume Ramping and Digital Volume    49                |
| Table 14. Digital Gain Settings and Output Voltage Scaling         50    |
| Table 15. Speaker Gain Minimum Voltage.    54                            |
| Table 16. Dynamic Headroom Tracking Attack Settings    59                |
| Table 17. Dynamic Headroom Tracking Release Settings    60               |
| Table 18. Dynamic Gain Enables    60                                     |
| Table 19. Limiter Threshold Select.    60                                |
| Table 20. Manual Limiter Threshold Settings    61                        |
| Table 21. Limiter Threshold    61                                        |
| Table 22. Limiter Attack and Release Settings    62                      |
| Table 23. Thermal ADC Measurements.    62                                |
| Table 24. Thermal Foldback Settings    63                                |
| Table 25. Thermal Foldback Enable    63                                  |
| Table 26. DHT INFO         64                                            |
| Table 28. Thermal and DHT Link Enables.    64                            |
| Table 27. THERM INFO         64                                          |
| Table 29. InterChip Communication Configuration    65                    |
| Table 30. DOUT Double Data Drive Mode    66                              |
| Table 31. DOUT DHT Receive Channel Configuration         67              |
| Table 32. DOUT Thermal Foldback Receive Channel Configuration         68 |
| Table 33. DOUT Thermal Foldback Receive Channel Configuration         69 |
| Table 34. Extra BCLK Cycle Configuration    70                           |
| Table 35. Manual HIZ Mode Configuration    70                            |
| Table 36. Speaker Configuration                                          |
| Table 37. Clock Monitor Configuration    73                              |
| Table 38. Reset Register    73                                           |
| Table 39. Global Enable Register    73                                   |
| Table 40. ADDR I <sup>2</sup> C Address Select                           |
| Table 41. Recommended External Components    78                          |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## **Detailed Functional Diagram**



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **Absolute Maximum Ratings**

| PVDD to PGND                 | 0.3V to 20V                        |
|------------------------------|------------------------------------|
| OUT_ to PGND                 | 0.3V to (V <sub>PVDD</sub> + 0.3V) |
| V <sub>REFC</sub> to AGND    | -0.3V to 2.2V                      |
| DVDD to DGND                 | 0.3V to 2.2V                       |
| SDA, SCL, ADDR_, IRQ to DGND | 0.3V to 2.2V                       |
| BCLK, LRCLK, DIN,            |                                    |
| RESET to DGND                | 0.3V to (V <sub>DVDD</sub> + 0.3V) |
| AGND, DGND to PGND           | 0.1V to 0.1V                       |

| Short-Circuit Duration                                      |                   |
|-------------------------------------------------------------|-------------------|
| Between OUTP, OUTN and PGND or PVDD                         | Continuous        |
| Between OUTP and OUTN                                       | Continuous        |
| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) for N | /lultilayer Board |
| (derate 27mW/°C above +70°C)                                | 1.9W              |
| Junction Temperature                                        | 150°C             |
| Operating Temperature Range                                 | 40°C to 85°C      |
| Storage Temperature Range                                   | -65°C to 150°C    |
| Soldering Temperature (reflow)                              | 260°C             |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### Package Thermal Characteristics (Note 1)

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

#### **Electrical Characteristics**

| PARAMETER                     | SYMBOL                    | CONDITIC                   | DN                        | MIN               | TYP  | MAX  | UNITS |      |
|-------------------------------|---------------------------|----------------------------|---------------------------|-------------------|------|------|-------|------|
| Power Supply Voltage          | V <sub>PVDD</sub>         |                            |                           | 5.5               |      | 18   | V     |      |
| Range                         | V <sub>DVDD</sub>         |                            |                           | 1.14              |      | 1.98 |       |      |
| VREFC Regulator Output        | V <sub>REFC</sub>         |                            |                           |                   | 2.0  |      | V     |      |
| PVDD Under Voltage<br>Lockout | PVDD<br>UVLO              |                            |                           | 3.65              | 4.3  | 4.75 | V     |      |
| DVDD Under Voltage<br>Lockout | DVDD<br>UVLO              |                            |                           |                   | 0.75 |      | V     |      |
| Quiescent Current             | I                         | SPK_SWCLK = 0              | 472kHz                    |                   | 8.4  | 12   | - mA  |      |
|                               | IQ_PVDD                   | SPK_SWCLK = 1              | 330kHz                    |                   | 7    |      |       |      |
| Quiescent Current             | IQ_DVDD                   |                            |                           |                   | 1.5  | 2.5  | mA    |      |
| Software Shutdown Supply      | I <sub>SHDN_SW</sub>      |                            | All DAI pins pulled low,  | I <sub>PVDD</sub> |      |      | 10    |      |
| Current                       |                           |                            | T <sub>A</sub> = 25°C     | IDVDD             |      |      | 10    | - μΑ |
| Hardware Shutdown             |                           | RESET =0V,                 | I <sub>PVDD</sub>         |                   |      | 5    |       |      |
| Supply Current                | ISHDN_HW                  | T <sub>A</sub> = 25°C      | IDVDD                     |                   |      | 1    | - μΑ  |      |
| Turn-On Time                  |                           | From SW_EN bit set to full | Volume ramping disabled   |                   | 10   |      |       |      |
|                               | t <sub>ON</sub> operation | _                          | Volume ramping<br>enabled |                   | 30   |      | – ms  |      |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Electrical Characteristics (continued)**

| PARAMETER                                | SYMBOL                                                                                         | CONDITIC                                                                      | ON                      | MIN                   | TYP | MAX                    | UNITS |
|------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|-----------------------|-----|------------------------|-------|
| Tum Off Time                             | <b>t</b>                                                                                       | From SW_EN bit cleared                                                        | Volume ramping disabled |                       | 10  |                        |       |
| Turn-Off Time                            | toff                                                                                           | to Shutdown                                                                   | Volume ramping enabled  |                       | 30  |                        | ms    |
| DIGITAL FILTER CHARAC                    | TERISICS (LF                                                                                   | RCLK < 50kHz) (Note 5)                                                        |                         | ·                     |     |                        |       |
| Passband Cutoff                          |                                                                                                | Ripple limit cutoff                                                           |                         | 0.43 x f <sub>S</sub> |     |                        |       |
|                                          | f <sub>PLP</sub>                                                                               | -3dB cutoff                                                                   |                         | 0.47 x f <sub>S</sub> |     |                        | Hz    |
|                                          |                                                                                                | -6.02dB cutoff                                                                |                         | 0.5 x f <sub>S</sub>  |     |                        |       |
| Passband Ripple                          |                                                                                                | f < f <sub>PLP</sub>                                                          |                         | -0.1                  |     | +0.1                   | dB    |
| Stopband Cutoff                          | f <sub>SLP</sub>                                                                               |                                                                               |                         |                       |     | 0.58 x f <sub>S</sub>  | Hz    |
| Stopband Attenuation                     |                                                                                                | f > f <sub>SLP</sub>                                                          |                         | 60                    |     |                        | dB    |
| DIGITAL FILTER CHARAC                    | TERISICS (LF                                                                                   | RCLK > 50kHz) (Note 5)                                                        |                         |                       |     |                        |       |
| Deschand Cutoff                          | £                                                                                              | Ripple limit cutoff                                                           |                         | 0.24 x f <sub>S</sub> |     |                        |       |
| Passband Cutoff                          | f <sub>PLP</sub>                                                                               | -3dB cutoff                                                                   |                         | 0.31 x f <sub>S</sub> |     |                        | Hz    |
| Passband Ripple                          |                                                                                                | f < f <sub>PLP</sub>                                                          |                         | -0.1                  |     | 0.1                    | dB    |
| Stopband Cutoff                          | f <sub>SLP</sub>                                                                               |                                                                               |                         |                       |     | 0.417 x f <sub>S</sub> | Hz    |
| Stopband Attenuation                     |                                                                                                | f > f <sub>SLP</sub>                                                          |                         | 60                    |     |                        | dB    |
| DIGITAL HIGHPASS FILTE                   | R CHARACT                                                                                      | ERISTICS                                                                      |                         |                       |     |                        |       |
| DC Attenuation (Note 5)                  |                                                                                                |                                                                               |                         | 80                    |     |                        | dB    |
| DC Blocking Cutoff<br>Frequency (Note 5) |                                                                                                | Across all sample rates                                                       | DACHPF = 0x1            |                       |     | 2                      | Hz    |
|                                          |                                                                                                |                                                                               | DACHPF = 0x2            |                       | 50  |                        |       |
|                                          |                                                                                                |                                                                               | DACHPF = 0x3            |                       | 100 |                        |       |
| High Pass Cutoff                         |                                                                                                | Across all sample rates                                                       | DACHPF = 0x4            |                       | 200 |                        | Hz    |
| Frequency                                |                                                                                                |                                                                               | DACHPF = 0x5            |                       | 400 |                        |       |
|                                          |                                                                                                |                                                                               | DACHPF = 0x6            |                       | 800 |                        |       |
| SPEAKER AMPLIFIER ELE                    |                                                                                                | ARACTERISTICS                                                                 |                         |                       |     |                        |       |
| DIGITAL VOLUME CONTR                     | OL                                                                                             |                                                                               |                         |                       |     |                        |       |
| Digital Volume (max)                     |                                                                                                | DVOL[6:0] = 0x00                                                              |                         |                       | 0   |                        | dB    |
| Digital Volume (min)                     |                                                                                                | DVOL[6:0] = 0x7E                                                              |                         |                       | -63 |                        | dB    |
| Volume Control Step Size                 |                                                                                                |                                                                               |                         |                       | 0.5 |                        | dB    |
| Output Offset Voltage                    | VOS                                                                                            | T <sub>A</sub> = 25°C                                                         |                         |                       | ±1  | ±5                     | mV    |
| Click-and-Pop Level                      | Kop                                                                                            | Peak voltage, $T_A = +25^{\circ}C$ ,<br>A-weighted,<br>32 samples per second, | Into shutdown           |                       | -66 |                        | dBV   |
| Shok and I op Lover                      | p Level K <sub>CP</sub> 32 samples per second,<br>digital audio inputs have<br>zero-code input | digital audio inputs have                                                     | Out of shutdown         |                       | -60 |                        |       |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Electrical Characteristics (continued)**

| PARAMETER                                              | SYMBOL           | CONDITIC                                                                                                                                                    | ON                                                     | MIN TY | P MAX | UNITS             |  |
|--------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------|-------|-------------------|--|
| Dynamic Range                                          | DR               | $V_{PVDD}$ = 17V, $Z_L$ = 8 $\Omega$ +<br>33 $\mu$ H, measured using the<br>EIAJ method,<br>-60dBFS 1kHz output<br>signal, referenced to 1%<br>output power | A-weighted                                             | 110    | )     | dB                |  |
| Integrated Output Noise                                | 0.1              | Z <sub>L</sub> = 8Ω + 33μH                                                                                                                                  | A-weighted                                             | 35     |       | μV <sub>RMS</sub> |  |
| Integrated Output Noise                                | e <sub>N</sub>   |                                                                                                                                                             | Unweighted                                             | 72     |       | PYRMS             |  |
|                                                        |                  |                                                                                                                                                             | Z <sub>L</sub> = 8Ω + 33μH                             | 8.2    | 2     |                   |  |
|                                                        |                  | THD+N ≤ 1%, f = 1kHz                                                                                                                                        | Z <sub>L</sub> = 8Ω + 33μH,<br>V <sub>PVDD</sub> = 17V | 15.    | 7     |                   |  |
| Output Dowor                                           |                  |                                                                                                                                                             | Z <sub>L</sub> = 4Ω + 33μH                             | 13.    | 2     | 14/               |  |
| Output Power                                           | Роит             | THD+N ≤ 10%, f = 1kHz                                                                                                                                       | Z <sub>L</sub> = 8Ω + 33μH                             | 10.    | 2     | - W<br>-<br>-     |  |
|                                                        |                  |                                                                                                                                                             | Z <sub>L</sub> = 8Ω + 33μH,<br>V <sub>PVDD</sub> = 17V | 19     |       |                   |  |
|                                                        |                  |                                                                                                                                                             | Z <sub>L</sub> = 4Ω + 33μH                             | 15.    | 8     |                   |  |
| Efficiency                                             | η <sub>spk</sub> | f = 1kHz                                                                                                                                                    | P <sub>OUT</sub> = 10W,<br>Z <sub>L</sub> = 8Ω + 33μH  | 91     |       |                   |  |
|                                                        |                  |                                                                                                                                                             | P <sub>OUT</sub> = 15W,<br>Z <sub>L</sub> = 4Ω + 33μH  | 8      |       | - %               |  |
|                                                        | rtion THD+N      | f = 1kHz                                                                                                                                                    | P <sub>OUT</sub> = 4W,<br>Z <sub>L</sub> = 8Ω + 33μH   | 0.0    | 2     |                   |  |
| Total Harmonic Distortion                              |                  |                                                                                                                                                             | P <sub>OUT</sub> = 8W,<br>Z <sub>L</sub> = 4Ω + 33μH   | 0.0    | 3     |                   |  |
| + Noise                                                |                  | f = Up to 6kHz                                                                                                                                              | P <sub>OUT</sub> = 4W,<br>Z <sub>L</sub> = 8Ω + 33μH   | 0.1    |       | - %               |  |
|                                                        |                  |                                                                                                                                                             | P <sub>OUT</sub> = 8W,<br>Z <sub>L</sub> = 4Ω + 33μH   | 0.3    | 2     |                   |  |
| Maximum Frequency<br>Response Deviation                |                  | Maximum deviation above and below 1kHz reference                                                                                                            |                                                        | 0.2    | 2     | dB                |  |
| Gain Error                                             | AVERROR          | f =1kHz, V <sub>O</sub> = 2.828V <sub>RMS</sub>                                                                                                             |                                                        | -0.5   | +0.5  | dB                |  |
| Maximum Channel-to-<br>Channel Phase Error<br>(Note 3) |                  | Output phase shift<br>between multiple devices<br>from 20Hz to 20kHz,<br>across all sample rates<br>and DAI operating modes                                 |                                                        | 1      |       | deg               |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Electrical Characteristics (continued)**

| PARAMETER                              | SYMBOL          | CONDIT                                        |                                                                     | MIN  | TYP            | MAX   | UNITS   |
|----------------------------------------|-----------------|-----------------------------------------------|---------------------------------------------------------------------|------|----------------|-------|---------|
|                                        |                 |                                               | V <sub>PVDD</sub> = 5.5V to<br>18V                                  |      | 85             |       |         |
| PVDD Power Supply<br>Rejection Ratio   | PSRR            |                                               | f =20Hz to 10kHz,<br>V <sub>RIPPLE</sub> =<br>100mV <sub>P-P</sub>  |      | 75             |       | dB      |
|                                        |                 |                                               | f =10kHz to<br>20kHz, V <sub>RIPPLE</sub> =<br>100mV <sub>P-P</sub> |      | 60             |       |         |
| DVDD Power Supply<br>Rejection Ratio   | PSRR            |                                               | f = 1kHz,<br>V <sub>RIPPLE</sub> =<br>50mV <sub>P-P</sub>           |      | 100            |       |         |
| Output Switching                       | £               | Constant across all                           | SPK_SWCLK = 0                                                       |      | 472            |       | kHz     |
| Frequency                              | fS              | sample rates                                  | SPK_SWCLK = 1                                                       |      | 330            |       | kHz     |
| Output Stage<br>On-Resistance          | R <sub>ON</sub> | PMOS + NMOS                                   |                                                                     |      | 0.425          |       | Ω       |
| Current Limit                          | ILIM            | $Z_L = 8\Omega + 33\mu H \text{ or } Z_L = 4$ | Ω + 33μΗ                                                            | 4.5  | 6.0            |       | A       |
| THERMAL FOLDBACK                       |                 |                                               |                                                                     |      |                |       |         |
| Attack Time                            |                 |                                               |                                                                     |      | 10             |       | μs      |
|                                        |                 | THRM_SLOPE[1:0] = 0x0                         | )                                                                   |      | 0.5            |       |         |
| Attenuation Slope                      |                 | THRM_SLOPE[1:0] = 0x1                         | 1                                                                   |      |                | dB/°C |         |
|                                        |                 | THRM_SLOPE[1:0] = 0x2                         |                                                                     | 2    |                |       |         |
| Max Attenuation                        |                 |                                               |                                                                     |      | 12             |       | dB      |
| Release Time                           |                 | THRM_REL[1:0] = 0x0                           |                                                                     |      | 3              |       | ms/dB   |
|                                        |                 | THRM_REL[1:0] = 0x3                           |                                                                     |      | 300            |       | 1113/00 |
| THERMAL SHUTDOWN                       |                 | 1                                             |                                                                     |      |                |       |         |
| Trigger Point                          |                 | (Note 3)                                      |                                                                     | 140  | 150            | 160   | °C      |
| Hysteresis                             |                 |                                               |                                                                     |      | 20             |       | °C      |
| PVDD ADC ELECTRICAL                    | CHARACTER       | STICS                                         | <u>.</u>                                                            |      |                |       |         |
| Resolution                             |                 |                                               |                                                                     |      | 8              |       | Bits    |
| Absolute Error                         |                 |                                               |                                                                     |      | 1.2            |       | LSB     |
| ADC Voltage Range                      |                 |                                               |                                                                     | 5.35 |                | 18.15 | V       |
| ADC Lowpass Filter<br>Cutoff Frequency |                 | -3dB limit                                    |                                                                     |      | 0.0875<br>x fS |       | Hz      |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Electrical Characteristics (continued)**

| PARAMETER                          | SYMBOL                            | CON                                | IDITION                | MIN               | TYP              | MAX               | UNITS |
|------------------------------------|-----------------------------------|------------------------------------|------------------------|-------------------|------------------|-------------------|-------|
| ADC Lowpass Filter                 |                                   | -40dB limit                        |                        |                   | 0.167            |                   | Hz    |
| Stopband Frequency                 |                                   |                                    |                        |                   | x f <sub>S</sub> |                   |       |
|                                    |                                   | PVDD_ADC_BW[1:0] =                 | 0x1                    |                   | 2                |                   |       |
| ADC Programmable<br>Lowpass Filter |                                   | PVDD_ADC_BW[1:0] =                 | 0x2                    |                   | 20               |                   | Hz    |
| Lowpass I liter                    |                                   | PVDD_ADC_BW[1:0] =                 | 0x3                    |                   | 200              |                   | 1     |
| DIGITAL I/O CHARACTERI             | STICS                             |                                    |                        |                   |                  |                   |       |
| DIN, BCLK, LRCLK, ADDR             | _, RESE⊺                          |                                    |                        |                   |                  |                   |       |
| Input Voltage High                 | Maria                             |                                    |                        | 0.7 x             |                  |                   | v     |
| Input voltage Figh                 | V <sub>IH</sub>                   |                                    |                        | V <sub>DVDD</sub> |                  |                   | V     |
| Input Voltage Low                  | V <sub>IL</sub>                   |                                    |                        |                   |                  | 0.3 x             | v     |
|                                    | ٩Ľ                                |                                    |                        |                   |                  | V <sub>DVDD</sub> | V     |
| Input Leakage Current              | I <sub>IH</sub> , I <sub>IL</sub> |                                    |                        | -1                |                  | +1                | μA    |
| Input Capacitance                  | C <sub>IN</sub>                   |                                    |                        |                   | 3                |                   | pF    |
| INPUT (SDA, SCL)                   |                                   |                                    |                        |                   |                  |                   |       |
| Input Voltage High                 | VIH                               |                                    |                        | 0.7 x             |                  |                   | V     |
|                                    | * IH                              |                                    |                        | V <sub>DVDD</sub> |                  |                   | , v   |
| Input Voltage Low                  | V <sub>IL</sub>                   |                                    |                        |                   |                  | 0.3 x             | v     |
|                                    | • 12                              |                                    |                        |                   |                  | V <sub>DVDD</sub> |       |
| Input Hysteresis                   | V <sub>HYS</sub>                  |                                    |                        |                   | 200              |                   | mV    |
| Input Capacitance                  | C <sub>IN</sub>                   |                                    |                        |                   | 3                |                   | pF    |
| Input Leakage Current              | I <sub>IH</sub> , I <sub>IL</sub> | T <sub>A</sub> = +25°C, input high | ו                      | -1                |                  | +1                | μA    |
| OUTPUT (SDA, IRQ)                  |                                   |                                    |                        |                   |                  |                   |       |
| Output Low Voltage                 | V <sub>OL</sub>                   | I <sub>SINK</sub> = 3mA            |                        |                   |                  | 0.4               | V     |
| Output Current                     | I <sub>OL</sub>                   |                                    |                        |                   | 13               |                   | mA    |
| DIGITAL AUDIO INTERFAC             | E TIMING CH                       | HARACTERISTICS                     |                        |                   |                  |                   |       |
| GLOBAL                             |                                   |                                    |                        |                   |                  |                   |       |
| LRCLK Frequency Range              | <sup>f</sup> LRCLK                | All DAI operating mode             | es                     | 32                |                  | 96                | kHz   |
|                                    |                                   |                                    |                        |                   | 16               |                   |       |
| Word Length                        |                                   | All DAI operating modes            |                        |                   | 24               |                   | bits  |
|                                    |                                   |                                    |                        |                   | 32               |                   | 1     |
| BCLK Duty Cycle                    |                                   |                                    |                        | 45                |                  | 55                | %     |
| Maximum BCLK/LRCLK                 |                                   | Maximum jitter with                | RMS jitter below 40kHz |                   | 0.5              |                   |       |
| Input Jitter                       |                                   | minimal performance                |                        |                   |                  |                   | ns    |
|                                    |                                   | degradation                        | RMS jitter above 40kHz |                   | 0.9              |                   |       |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Electrical Characteristics (continued)**

| PARAMETER                                   | SYMBOL                | CONDITION                         | MIN | TYP                 | MAX  | UNITS  |  |  |  |
|---------------------------------------------|-----------------------|-----------------------------------|-----|---------------------|------|--------|--|--|--|
| PCM MODE (I <sup>2</sup> S, LEFT-JUSTIFIED) |                       |                                   |     |                     |      |        |  |  |  |
| LRCLK Duty Cycle                            |                       |                                   | 45  |                     | 55   | %      |  |  |  |
| LRCLK to BCLK Active<br>Edge Setup Time     | <sup>t</sup> SYNCSET  |                                   | 10  |                     |      | ns     |  |  |  |
| LRCLK to BCLK Active<br>Edge Hold Time      | <sup>t</sup> SYNCHOLD |                                   | 10  |                     |      | ns     |  |  |  |
| DIN to BCLK Active Edge<br>Setup Time       | <sup>t</sup> SETUP    |                                   | 10  |                     |      | ns     |  |  |  |
| DIN to BCLK Active Edge<br>Hold Time        | thold                 |                                   | 10  |                     |      | ns     |  |  |  |
| BCLK Period (Note 3)                        | t <sub>BCLK</sub>     |                                   | 160 |                     |      | ns     |  |  |  |
|                                             |                       |                                   |     |                     | 6.25 |        |  |  |  |
| BCLK Frequency                              | £                     |                                   |     | f <sub>S</sub> x 32 |      | MHz    |  |  |  |
| (Note 3)                                    | <sup>f</sup> BCLK     |                                   |     | f <sub>S</sub> x 48 |      |        |  |  |  |
|                                             |                       |                                   |     | f <sub>S</sub> x 64 |      |        |  |  |  |
| TDM MODE                                    |                       |                                   |     |                     |      |        |  |  |  |
| LRCLK Pulse Width                           | PWLRCLK               | Measured in number of BCLK cycles |     |                     | 511  | cycles |  |  |  |
| DIN Frame Delay after<br>LRCLK Edge         |                       | Measured in number of BCLK cycles | 0   |                     | 2    | cycles |  |  |  |
| BCLK Period (Note 3)                        | t <sub>BCLK</sub>     |                                   | 20  |                     |      | ns     |  |  |  |
| BCLK Frequency<br>(Note 3)                  | fBCLK                 | All TDM operating modes           |     |                     | 50   | MHz    |  |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking



Figure 1. I<sup>2</sup>S Audio Interface Timing Diagram



Figure 2. Left-Justified Audio Interface Timing Diagram



Figure 3.TDM Audio Interface Timing Diagrams

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### I<sup>2</sup>C Timing Characteristics

| PARAMETER                                       | SYMBOL              | CONDITIONS | MIN                       | TYP | MAX | UNITS |
|-------------------------------------------------|---------------------|------------|---------------------------|-----|-----|-------|
| I <sup>2</sup> C TIMING CHARACTERISTI           | CS                  |            |                           |     |     |       |
| Serial Clock Frequency                          | f <sub>SCL</sub>    |            | 0                         |     | 400 | kHz   |
| Bus Free Time Between STOP and START Conditions | t <sub>BUF</sub>    |            | 1.3                       |     |     | μs    |
| Hold Time (Repeated) START<br>Condition         | t <sub>HD,STA</sub> |            | 0.6                       |     |     | μs    |
| SCL Pulse-Width Low                             | t <sub>LOW</sub>    |            | 1.3                       |     |     | μs    |
| SCL Pulse-Width High                            | thigh               |            | 0.6                       |     |     | μs    |
| Setup Time for a Repeated START Condition       | <sup>t</sup> SU,STA |            | 0.6                       |     |     | μs    |
| Data Hold Time                                  | <sup>t</sup> HD,DAT |            | 0                         |     | 900 | ns    |
| Data Setup Time                                 | t <sub>SU,DAT</sub> |            | 100                       |     |     | ns    |
| SDA and SCL Receiving Rise<br>Time (Note 4)     | t <sub>R</sub>      |            | 20 +<br>0.1C <sub>B</sub> |     | 300 | ns    |
| SDA and SCL Receiving Fall<br>Time (Note 4)     | t <sub>F</sub>      |            | 20 +<br>0.1C <sub>B</sub> |     | 300 | ns    |
| SDA Transmitting Fall Time                      | t <sub>F</sub>      |            | 20                        |     | 250 | ns    |
| Setup Time for STOP<br>Condition                | <sup>t</sup> su,sto |            | 0.6                       |     |     | μs    |
| Bus Capacitance                                 | CB                  |            |                           |     | 400 | pF    |
| Pulse Width of Suppressed Spike                 | t <sub>SP</sub>     |            | 0                         |     | 50  | ns    |



Figure 4. I<sup>2</sup>C Interface Timing Diagram

## Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **Power Consumption**

 $(V_{PVDD} = 12V, V_{DVDD} = \overline{RESET} = 1.8V, V_{GND} = 0V, C_{PVDD} = 1x 220\mu$ F, 2x 10 $\mu$ F, 2x 0.1 $\mu$ F, CV<sub>REFC</sub> = 1 $\mu$ F, C<sub>DVDD</sub> = 1 $\mu$ F, Z<sub>SPK</sub> = open, AC measurement bandwidth 20Hz to 22kHz, f<sub>S</sub> = 48kHz, 24-bit data, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless, otherwise noted. Typical values are at T<sub>A</sub> = +25°C.) (Note 2)

| CONDITION                               | I <sub>PVDD</sub><br>(mA) | P <sub>PVDD</sub><br>(mW) | I <sub>DVDD</sub><br>(mA) | P <sub>DVDD</sub><br>(mW) | P <sub>TOTAL</sub><br>(mW) |
|-----------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|
| f <sub>SPK</sub> =330kHz                |                           |                           |                           |                           |                            |
| PCM to SPK                              | 7.0                       | 84.0                      | 1.3                       | 2.3                       | 86.3                       |
| PCM to SPK, DHT                         | 7.3                       | 88.0                      | 1.8                       | 3.3                       | 91.3                       |
| PCM to SPK, LMTR                        | 7.0                       | 84.0                      | 1.8                       | 3.2                       | 87.2                       |
| f <sub>SPK</sub> =472kHz                |                           |                           |                           |                           |                            |
| PCM to SPK,                             | 8.4                       | 100.8                     | 1.3                       | 2.3                       | 103.1                      |
| PCM to SPK, DHT                         | 8.8                       | 105.6                     | 1.8                       | 3.3                       | 108.9                      |
| PCM to SPK, LMTR                        | 8.5                       | 101.5                     | 1.8                       | 3.2                       | 104.7                      |
| f <sub>SPK</sub> =472kHz AND PVDD = 17V |                           |                           |                           |                           |                            |
| PCM to SPK                              | 9.3                       | 157.7                     | 1.3                       | 2.3                       | 160.0                      |
| PCM to SPK, DHT                         | 6.6                       | 163.0                     | 1.8                       | 3.3                       | 166.6                      |
| PCM to SPK, LMTR                        | 6.0                       | 157.1                     | 1.8                       | 3.2                       | 160.3                      |

**Note 2:** 100% production tested at T<sub>A</sub> = +25C. Specifications over temperature limits are guaranteed by design. Typical values are based on 1 sigma characterization data, unless otherwise noted.

**Note 3:** Minimums and/or maximum limits shown are design targets and not 100% production tested. Characterization data is provided to validate device performance.

Note 4: C<sub>B</sub> in pF.

**Note 5:** Digital filter performance is invariant over temperature and production tested at  $T_A = +25C$ .

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

20

20

20

#### **Typical Operating Characteristics**

(V<sub>PVDD</sub> = 12V, V<sub>DVDD</sub> = 1.8V, V<sub>GND</sub> = 0V, SPK\_GAIN\_MAX = 0x0B (20.5dB), f<sub>BCLK</sub> = 3.072MHz, f<sub>LRCLK</sub> = 48kHz, speaker loads  $(Z_{SPK})$  connected between OUTP and OUTN,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25$ °C.)



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$ 









THD+N RATIO vs.





TOTAL HARMONIC DISTORTION PLUS NOISE



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$ 



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$ 



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, speaker loads (Z_{SPK}) connected between OUTP and OUTN, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)$ 



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B (20.5dB), f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz$ , speaker loads (Z<sub>SPK</sub>) connected between OUTP and OUTN, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T<sub>A</sub> = +25°C.)



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Typical Operating Characteristics (continued)**

 $(V_{PVDD} = 12V, V_{DVDD} = 1.8V, V_{GND} = 0V, SPK_GAIN_MAX = 0x0B$  (20.5dB),  $f_{BCLK} = 3.072MHz$ ,  $f_{LRCLK} = 48kHz$ , speaker loads (Z<sub>SPK</sub>) connected between OUTP and OUTN,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25^{\circ}C$ .)



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## **Pin Configurations**



# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## **Pin Description**

| BUMP             | NAME    | SUPPLY RAIL | FUNCTION                                                                                                                                                                                                     |
|------------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1               | OUTNSNS | PVDD        | Negative Speaker Amplifier Output Sense. If not used, connect to OUTN.                                                                                                                                       |
| A2, A3<br>E2, E3 | PVDD    | _           | Speaker Amplifier Power Supply. Bypass each bump pair to PGND with a $10\mu F$ and a $0.1\mu F$ , and a single $220\mu F$ per device.                                                                        |
| A4               | DVDD    | —           | Digital Core, Digital Audio Interface, and I <sup>2</sup> C Control Power Supply. Bypass to DGND with a $1\mu F.$                                                                                            |
| A5               | ADDR1   | DVDD        | Four-Level I <sup>2</sup> C Slave Address Select Input. See the <i>Slave Address Selection</i> section for additional information (Table 40).                                                                |
| A6               | SCL     | DVDD        | I <sup>2</sup> C Control Clock Input                                                                                                                                                                         |
| B1, B2           | OUTN    | PVDD        | Negative Speaker Amplifier Output                                                                                                                                                                            |
| B3,C1-C3,<br>D3  | PGND    | _           | Speaker Amplifier Ground                                                                                                                                                                                     |
| B4               | DGND    | _           | Digital Ground                                                                                                                                                                                               |
| B5               | ADDR0   | DVDD        | Four-Level I <sup>2</sup> C Slave Address Select Input. See the <i>Slave Address Selection</i> section for additional information (Table 40).                                                                |
| B6               | SDA     | DVDD        | I <sup>2</sup> C Control Data Input/Output                                                                                                                                                                   |
| C4, D4           | AGND    | _           | Analog Ground                                                                                                                                                                                                |
| C5               | DOUT    | DVDD        | Bidirectional ICC Link Data                                                                                                                                                                                  |
| C6               | LRCLK   | DVDD        | DAI Left/Right Clock Input. LRCLK is the audio sample rate clock and determines whether audio data is routed to the left or right channel. In TDM mode, LRCLK is a frame sync pulse with programmable width. |
| D1, D2           | OUTP    | PVDD        | Positive Speaker Amplifier Output                                                                                                                                                                            |
| D5               | ĪRQ     | DVDD        | Hardware Interrupt Output. $\overline{IRQ}$ can be programmed to pull low when individual bits in the flag registers change value. Connect a $10k\Omega$ pullup resistor for full output swing.              |
| D6               | DIN     | DVDD        | DAI Audio Data Input                                                                                                                                                                                         |
| E1               | OUTPSNS | PVDD        | Positive Speaker Amplifier Output Sense. If not used, connect to OUTP.                                                                                                                                       |
| E4               | VREFC   | PVDD        | Internal Regulator Decoupling Point. Bypass to AGND with a 1µF.                                                                                                                                              |
| E5               | RESET   | DVDD        | Active-Low Hardware Reset. Drive low to place the device into low power reset mode and reset the device registers to their power-on-reset (POR) states.                                                      |
| E6               | BCLK    | DVDD        | DAI Bit Clock Input                                                                                                                                                                                          |

#### **Detailed Description**

The MAX98371 is a high-efficiency mono Class D audio amplifier that features thermal foldback protection and ADCs for sensing battery supply voltage and onboard temperature.

The MAX98371 can operate over a wide range of supply voltage (PVDD), and has extensive on-board digital signal processing to enable Dynamic Headroom Tracking (DHT). This feature automatically adjusts the output signal to fit into the available supply voltage range. The DHT can be completely bypassed for operation with fixed, regulated supply voltages.

Maxim's Active Emissions Limiting (AEL) edge rate and overshoot control circuitry, together with Class D modulation minimize the electromagnetic interference (EMI) traditionally associated with Class D amplifiers. In systems that use less than 18 inches of speaker cable, an output filter is unnecessary to meet standard EMI limits.

Two ADCs monitor PVDD supply voltage and die temperature. The PVDD supply voltage value can be read using the I<sup>2</sup>C interface. The temperature ADC can be read back through I<sup>2</sup>C, however, accurate readings only occur after the die temperature exceeds 100°C.

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

The DAI supports I<sup>2</sup>S, Left-Justified, and TDM formatted data at the following sample rates: 32kHz, 44.1kHz, 48kHz, 88.2kHz, and 96kHz. Audio bit depths of 16, 24, and 32 bits are supported for input data. The DAI operates from BCLK to allow the device to function without MCLK.

Thermal foldback allows the device to smoothly attenuate the audio output in an effort to prevent destructive thermal behavior. Above a set threshold, the gain of the replay path reduces at a (user programmable) dB/°C rate to a 12dB maximum attenuation. Thermal monitoring capabilities alert the host when die temperature has triggered the thermal foldback circuit, or is approaching the maximum operating temperature. If maximum die temperature is exceeded, the device shuts down to protect itself. Shortcircuit protection ensures that accidental shorts or highcurrent events do not cause damage to the IC.

Device status is communicated to the host through a hardware interrupt ( $\overline{IRQ}$ ) and status registers accessible through the I<sup>2</sup>C interface.

The MAX98371 is fully programmable through the I<sup>2</sup>C interface. ADDR0, ADDR1 connections select one of sixteen I<sup>2</sup>C slave addresses. Shutdown mode is directly controlled through the I<sup>2</sup>C interface, or a hardware shutdown can be asserted through the RESET pin.

| REGIS  | STER DESCRIPTI        | ON  |       |                   |                          | REGISTER                 | CONTENTS                  | ;                         |                            |                            | POR   |
|--------|-----------------------|-----|-------|-------------------|--------------------------|--------------------------|---------------------------|---------------------------|----------------------------|----------------------------|-------|
| ADDR   | NAME                  | R/W | BIT 7 | BIT 6             | BIT 5                    | BIT 4                    | BIT 3                     | BIT2                      | BIT1                       | BIT 0                      | STATE |
| INTERR | RUPTS                 |     |       |                   |                          |                          |                           |                           |                            |                            |       |
| 0x01   | INTERRUPT<br>STATUS 0 | R   | _     | _                 | THRMFB_<br>STATUS        | _                        | THRM<br>WRN_<br>STATUS    | _                         | THRM<br>SHDN_<br>STATUS    | _                          | 0x00  |
| 0x02   | INTERRUPT<br>STATUS 1 | R   |       | ICCOVC_<br>STATUS | LMTRACT_<br>STATUS       | INVAL<br>SLOT_<br>STATUS | DHTACT_<br>STATUS         | SPK<br>CURNT_<br>STATUS   | PVDD<br>OVFL_<br>STATUS    | PVDD<br>UVLO_<br>STATUS    | 0x00  |
| 0x03   | INTERRUPT<br>STATE 0  | R   | _     | _                 | THRMFB_<br>END_<br>STATE | THRMFB_<br>BGN_<br>STATE | THRM<br>WRN_END<br>_STATE | THRM<br>WRN_BGN<br>_STATE | THRM<br>SHDN_END<br>_STATE | THRM<br>SHDN_BGN<br>_STATE | 0x00  |
| 0x04   | INTERRUPT<br>STATE 1  | R   |       | ICCOVC_<br>STATE  | LMTRACT_<br>STATE        | INVAL<br>SLOT_<br>STATE  | DHTACT_<br>STATE          | SPK<br>CURNT_<br>STATE    | PVDD<br>OVFL_<br>STATE     | PVDD<br>UVLO_<br>STATE     | 0x00  |
| 0x05   | INTERRUPT<br>FLAG 0   | R/W | _     | _                 | THRMFB_<br>END_ FLAG     | THRMFB_<br>BGN_<br>FLAG  | THRM<br>WRN_END_<br>FLAG  | THRM<br>WRN_BGN<br>_FLAG  | THRM<br>SHDN_<br>END_ FLAG | THRM<br>SHDN_<br>BGN_ FLAG | 0x00  |

#### Table 1. MAX98371 Control Register Map

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| REGI   | STER DESCRIPTI            | ON   |                       |                      |                       | REGISTER               | CONTENTS                | 5                        |                           |                          | POR   |  |
|--------|---------------------------|------|-----------------------|----------------------|-----------------------|------------------------|-------------------------|--------------------------|---------------------------|--------------------------|-------|--|
| ADDR   | NAME                      | R/W  | BIT 7                 | BIT 6                | BIT 5                 | BIT 4                  | BIT 3                   | BIT2                     | BIT1                      | BIT 0                    | STATE |  |
| 0x06   | INTERRUPT<br>FLAG 1       | R/W  | _                     | ICCOVC_<br>FLAG      | LMTRACT_<br>FLAG      | INVAL<br>SLOT_<br>FLAG | DHTACT_<br>FLAG         | SPK<br>CURNT_<br>FLAG    | PVDD<br>OVFL_<br>FLAG     | PVDD<br>UVLO_ FLAG       | 0x00  |  |
| 0x07   | INTERRUPT<br>ENABLES 0    | R/W  | _                     | _                    | THRMFB_<br>END_<br>EN | THRMFB_<br>BGN_<br>EN  | THRM<br>WRN_<br>END_ EN | THRM<br>WRN_<br>BGN_ EN  | THRM<br>SHDN_<br>END_ EN  | THRM<br>SHDN_<br>BGN_ EN | 0x00  |  |
| 0x08   | INTERRUPT<br>ENABLES 1    | R/W  | _                     | ICCOVC_<br>EN        | LMTRACT_<br>EN        | INVAL<br>SLOT_EN       | DHTACT_ EN              | SPK<br>CURNT_<br>EN      | PVDD<br>OVFL_EN           | PVDD<br>UVLO_EN          | 0x00  |  |
| 0x09   | INTERRUPT<br>CLEARS 0     | w    | _                     | _                    | THRMFB_<br>END_CLR    | THRMFB_<br>BGN_CLR     | THRM<br>WRN_<br>END_CLR | THRM<br>WRN_<br>BGN_ CLR | THRM<br>SHDN_<br>END_ CLR | THRM<br>SHDN_<br>BGN_CLR | 0x00  |  |
| 0x0A   | INTERRUPT<br>CLEARS 1     | w    | _                     | ICCOVC_<br>CLR       | LMTRACT_<br>CLR       | INVAL<br>SLOT_CLR      | DHTACT_<br>CLR          | SPK<br>CURNT_<br>CLR     | PVDD<br>OVFL_CLR          | PVDD<br>UVLO_CLR         | 0x00  |  |
| PCM C  | ONFIGURATION              |      |                       |                      |                       |                        |                         |                          |                           |                          |       |  |
| 0x10   | PCM CLOCK<br>SETUP        | R/W  | _                     | _                    | _                     | _                      | BSEL[3:0]               |                          |                           |                          | 0x06  |  |
| 0x11   | PCM SAMPLE<br>RATE SETUP  | R/W  | _                     | _                    | _                     | _                      | SPK_SR[3:0]             |                          |                           |                          | 0x08  |  |
| 0x14   | PCM MODE<br>CONFIG        | R/W  | CHAN                  | SZ[1:0]              |                       | FORMAT[2:0             | 2:0] BCLEDGE CHANSEL —  |                          | _                         | 0x80                     |       |  |
| 0x15   | PCM RX<br>ENABLES A       | R/W  | RX_<br>CH7_EN         | RX_<br>CH6_EN        | RX_<br>CH5_EN         | RX_<br>CH4_EN          | RX_<br>CH3_EN           | RX_<br>CH2_EN            | RX_<br>CH1_EN             | RX_<br>CH0_EN            | 0x00  |  |
| 0x16   | PCM RX<br>ENABLES B       | R/W  | RX_<br>CH15_EN        | RX_<br>CH14_EN       | RX_<br>CH13_EN        | RX_<br>CH12_EN         | RX_<br>CH11_EN          | RX_<br>CH10_EN           | RX_<br>CH9_EN             | RX_<br>CH8_EN            | 0x00  |  |
| 0x18   | MONOMIX<br>CHANNEL SOURCE | R/W  | DI                    | MONOMIX_CI           | H1_SOURCE[            | 3:0]                   | DM                      | IONOMIX_CH               | 10_SOURCE[3               | :0]                      | 0x00  |  |
| 0x19   | MONOMIX<br>CHANNEL SOURCE | R/W  | _                     | _                    | _                     | _                      | _                       | _                        | DMONOMI                   | X_CFG[1:0]               | 0x00  |  |
| DIGITA | L FILTER PARAMI           | ETER | S                     |                      |                       |                        |                         |                          |                           |                          |       |  |
| 0x1C   | DIGITAL FILTER            | R/W  | PVDD_FILT<br>_TO_LMTR | PVDD_FILT<br>_TO_DHT | PVDD_AD               | 0C_BW[1:0]             | _                       |                          | DACHPF[2:0]               |                          | 0x00  |  |
| 0x1D   |                           | R/W  |                       | <u>!</u>             |                       | DAC_BQ                 | _B0[23:16]              |                          |                           |                          | 0x00  |  |
| 0x1E   | DAC BQ B0                 | R/W  |                       |                      |                       | DAC_BC                 | Q_B0[15:8]              |                          |                           |                          | 0x00  |  |
| 0x1F   |                           | R/W  |                       |                      |                       | DAC_B                  | Q_B0[7:0]               |                          |                           |                          | 0x00  |  |
| 0x20   |                           | R/W  |                       |                      |                       | DAC_BQ                 | _B1[23:16]              |                          |                           |                          | 0x00  |  |
| 0x21   | DAC BQ B1                 | R/W  |                       |                      |                       | DAC_BC                 | Q_B1[15:8]              |                          |                           |                          | 0x00  |  |
| 0x22   |                           | R/W  |                       |                      |                       | DAC_B                  | Q_B1[7:0]               |                          |                           |                          | 0x00  |  |
| 0x23   |                           | R/W  |                       |                      |                       | DAC_BQ                 | _B2[23:16]              |                          |                           |                          | 0x00  |  |
| 0x24   | DAC BQ B2                 | R/W  |                       |                      |                       |                        |                         |                          |                           |                          | 0x00  |  |
|        | DAC BQ B2                 |      |                       | DAC_BQ_B2[15:8]      |                       |                        |                         |                          |                           |                          |       |  |

### Table 1. MAX98371 Control Register Map (continued)

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| REGI  | STER DESCRIPTI                         | ON   |                   |                                     |                   | REGISTER          | CONTENTS          | 5                 |                  |                  | POR   |
|-------|----------------------------------------|------|-------------------|-------------------------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|-------|
| ADDR  | NAME                                   | R/W  | BIT 7             | BIT 6                               | BIT 5             | BIT 4             | BIT 3             | BIT2              | BIT1             | BIT 0            | STATE |
| 0x26  |                                        | R/W  |                   |                                     | Ι                 | DAC_BQ_           | A0[23:16]         | 11                |                  | 1                | 0x00  |
| 0x27  | DAC BQ A0                              | R/W  |                   |                                     |                   | DAC_BQ            | _A0[15:8]         |                   |                  |                  | 0x00  |
| 0x28  |                                        | R/W  |                   |                                     |                   | DAC_BQ            | _A0[7:0]          |                   |                  |                  | 0x00  |
| 0x29  |                                        | R/W  |                   |                                     |                   | DAC_BQ_           | A1[23:16]         |                   |                  |                  | 0x00  |
| 0x2A  | DAC BQ A1                              | R/W  |                   |                                     |                   | DAC_BQ            | _A1[15:8]         |                   |                  |                  | 0x00  |
| 0x2B  |                                        | R/W  |                   | DAC_BQ_A1[7:0]                      |                   |                   |                   |                   |                  | 0x00             |       |
| 0x2D  | DIGITAL VOLUME<br>CONTROL              | R/W  | DVOL_<br>RAMP_BYP | - $() () (0) (6.0)$                 |                   |                   |                   |                   |                  |                  | 0x00  |
| 0x2E  | PATH GAIN                              | R/W  |                   | DPGA_                               | CLIP[3:0]         |                   |                   | SPK_GAIN          | _MAX[3:0]        |                  | 0x0B  |
| DYNAN | IIC GAIN PARAMI                        | ETER | S                 |                                     |                   |                   |                   |                   |                  |                  |       |
| 0x31  | DHT ROTATION<br>POINT                  | R/W  |                   | SPK_GAIN_MIN[3:0] DHT_VROT_PNT[3:0] |                   |                   |                   |                   |                  | 0x00             |       |
| 0x32  | DHT ATTACK                             | R/W  | _                 | —                                   | —                 | DHT_ATK_          | STEP[1:0]         | DH1               | _ATK_RATE[       | 2:0]             | 0x18  |
| 0x33  | DHT RELEASE                            | R/W  | —                 | —                                   | _                 | DHT_REL_          | STEP[1:0]         | DHT               | _REL_RATE[       | 2:0]             | 0x00  |
| 0x34  | PVDD ADC<br>MEASUREMENT                | R    |                   | PVDD_ADC[7:0]                       |                   |                   |                   |                   |                  | 0x00             |       |
| 0x36  | THERMAL<br>FOLDBACK                    | R/W  | THRM_H            | OLD[1:0]                            | _                 | _                 | THRM_             | REL[1:0]          | THRM_S           | LOPE[1:0]        | 0x00  |
| 0x37  | THERMAL ADC<br>MEASUREMENT             | R    | _                 | _                                   |                   |                   | THRM_ADC          | _MEAS[5:0]        |                  |                  | 0x00  |
| 0x38  | THERMAL<br>FOLDBACK MIN<br>TEMP        | R/W  | _                 | _                                   |                   |                   | THRM_MIN          | _TEMP[5:0]        |                  |                  | 0x00  |
| 0x39  | THERMAL<br>FOLDBACK LOW<br>PASS FILTER | R/W  | _                 |                                     | _                 | _                 | _                 | THR               | M_FILT_SEL       | [2:0]            | 0x00  |
| 0x3A  | PCM2 RXDHT<br>ENABLES A                | R/W  | RXDHT_<br>CH7_EN  | RXDHT_<br>CH6_EN                    | RXDHT_<br>CH5_EN  | RXDHT_<br>CH4_EN  | RXDHT_<br>CH3_EN  | RXDHT_<br>CH2_EN  | RXDHT_<br>CH1_EN | RXDHT_<br>CH0_EN | 0x00  |
| 0x3B  | PCM2 RXDHT<br>ENABLES B                | R/W  | RXDHT_<br>CH15_EN | RXDHT_<br>CH14_EN                   | RXDHT_<br>CH13_EN | RXDHT_<br>CH12_EN | RXDHT_<br>CH11_EN | RXDHT_<br>CH10_EN | RXDHT_<br>CH9_EN | RXDHT_<br>CH8_EN | 0x00  |
| 0x3C  | PCM2 RXTHM<br>ENABLES A                | R/W  | RXTHM_<br>CH7_EN  | RXTHM_<br>CH6_EN                    | RXTHM_<br>CH5_EN  | RXTHM_<br>CH4_EN  | RXTHM_<br>CH3_EN  | RXTHM_<br>CH2_EN  | RXTHM_<br>CH1_EN | RXTHM_<br>CH0_EN | 0x00  |
| 0x3D  | PCM2 RXTHM<br>ENABLES B                | R/W  | RXTHM_<br>CH15_EN | RXTHM_<br>CH14_EN                   | RXTHM_<br>CH13_EN | RXTHM_<br>CH12_EN | RXTHM_<br>CH11_EN | RXTHM_<br>CH10_EN | RXTHM_<br>CH9_EN | RXTHM_<br>CH8_EN | 0x00  |
| 0x3E  | PCM2 TX \<br>ENABLES A                 | R/W  | TX_<br>CH7_EN     | TX_<br>CH6_EN                       | TX_<br>CH5_EN     | TX_<br>CH4_EN     | TX_<br>CH3_EN     | TX_<br>CH2_EN     | TX_<br>CH1_EN    | TX_<br>CH0_EN    | 0x00  |

## Table 1. MAX98371 Control Register Map (continued)

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| REGI  | STER DESCRIPTION               | ON  |                 |                 | [                        | REGISTER               | CONTENTS                  | 5               |                      |                            | POR   |
|-------|--------------------------------|-----|-----------------|-----------------|--------------------------|------------------------|---------------------------|-----------------|----------------------|----------------------------|-------|
| ADDR  | NAME                           | R/W | BIT 7           | BIT 6           | BIT 5                    | BIT 4                  | BIT 3                     | BIT2            | BIT1                 | BIT 0                      | STATE |
| 0x3F  | PCM2 TX<br>ENABLES A           | R/W | TX_<br>CH15_EN  | TX_<br>CH14_EN  | TX_<br>CH13_EN           | TX_<br>CH12_EN         | TX_<br>CH11_EN            | TX_<br>CH10_EN  | TX_<br>CH9_EN        | TX_<br>CH8_EN              | 0x00  |
| 0x40  | PCM2 DATA<br>ORDER SELECT      | R/W | _               | _               | _                        | _                      | DRIVE_<br>MODE            | _               | _                    | _                          | 0x00  |
| 0x41  | PCM2 HiZ<br>MANUAL MODE        | R/W |                 | _               | _                        | _                      | _                         | _               | TX_<br>EXTRA_<br>HIZ | _                          | 0x00  |
| 0x42  | PCM2 TX HiZ<br>ENABLES A       | R/W | TX_<br>CH7_HIZ  | TX_<br>CH6_HIZ  | TX_<br>CH5_HIZ           | TX_<br>CH4_HIZ         | TX_<br>CH3_HIZ            | TX_<br>CH2_HIZ  | TX_<br>CH1_HIZ       | TX_<br>CH0_HIZ             | 0x00  |
| 0x43  | PCM2 TX HiZ<br>ENABLES B       | R/W | TX_<br>CH15_HIZ | TX_<br>CH14_HIZ | TX_<br>CH13_HIZ          | TX_<br>CH12_HIZ        | TX_<br>CH11_HIZ           | TX_<br>CH10_HIZ | TX_<br>CH9_HIZ       | TX_<br>CH8_HIZ             | 0x00  |
| ENABL | ES                             |     | I               |                 | I                        |                        | 1                         | I               | 1                    | 1                          |       |
| 0x4A  | SPEAKER<br>ENABLE              | R/W | SPK_<br>SWCLK   | _               | _                        | _                      | SPK_E                     | DGE[1:0]        | _                    | SPK_EN                     | 0x00  |
| 0x4B  | DYNAMIC GAIN<br>ENABLES        | R/W | _               | _               | _                        | _                      | _                         | PVADC_EN        | LMTR_EN              | DHT_EN                     | 0x00  |
| 0x4C  | THERMAL<br>FOLDBACK ENABLE     | R/W | _               | _               | _                        | _                      | _                         | _               | _                    | THERM_<br>FB_EN            | 0x00  |
| 0x4D  | RESTART BEHAVIOR               | R/W | _               | _               | _                        | _                      | CMON_<br>AUTO_<br>RESTART | CMON_<br>ENA    | OVC_<br>SEL          | TSHDN_<br>AUTO_<br>RESTART | 0x00  |
| 0x4E  | ICC LINK ENABLE                | R/W | _               | _               | _                        | _                      | _                         | _               | THM_<br>LINK_EN      | DHT_<br>LINK_EN            | 0x00  |
| 0x50  | GLOBAL ENABLE                  | R/W | _               | _               | _                        | _                      | _                         | _               | _                    | EN                         | 0x00  |
| 0x51  | SOFTWARE RESET                 | W   | —               | _               | —                        | _                      | —                         | —               | —                    | RST                        | 0x00  |
| 0x55  | LIMITER ATTACK<br>AND RELEASE  | R/W | _               | _               | LMT                      | R_REL_RATE             | [2:0]                     | LMT             | R_ATK_RATE           | [2:0]                      | 0x00  |
| 0x58  | LIMITER<br>THRESHOLD<br>SELECT | R/W | _               | _               | _                        | _                      | _                         | _               | LMTR_TH_SEL[1:0]     |                            | 0x00  |
| 0x59  | LIMITER MANUAL<br>THRESHOLD    | R/W | _               | _               | _                        |                        | LMTR_THC[4:0]             |                 |                      | 0x00                       |       |
| 0x5C  | ICC PAD<br>CONTROL             | R/W | _               | ICC_OC_<br>ENA  | ICC_<br>DOUTEN_<br>EXTFF | ICC_<br>DOUT_<br>EXTFF | ICC_PAD_CTRL[3:0]         |                 | 0x00                 |                            |       |
| 0xFF  | REV ID                         | R   |                 |                 |                          | REVI                   | D[ <b>7</b> :0]           |                 |                      |                            | 0x43  |

## Table 1. MAX98371 Control Register Map (continued)

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

#### Interrupts

The MAX98371 supports programmable interrupts for sending feedback to the host about events that have occurred on-chip. <u>Table 2</u> lists the available interrupt sources. Interrupts are output on IRQ, an active low opendrain output.

#### Status

Each interrupt source has one bit to indicate the realtime STATUS of the source. This bit is read-only.

#### State

Each interrupt source has a STATE bit that is set whenever a rising edge occurs on the associated STATUS bit regardless of the state of the associated ENABLE bit. This bit is read-only.

#### **Table 2. Interrupt Sources**

#### Flag

Each interrupt source has a FLAG bit to indicate that a rising edge has occurred on the associated STATUS bit and the associated ENABLE bit is set. This bit is read-only.

#### Enable

Each interrupt source has an ENABLE bit to indicate that the associated FLAG bit is set whenever the STATE bit is set. This bit is read/write.

#### Clear

Each interrupt has a CLEAR bit that clears the associated STATE and FLAG bits when a 1 is written. Writing a 0 has no effect. This bit is write-only.

| NAME                             | DESCRIPTION                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overtemperature Begin Event      | Indicates when the die overtemperature threshold has been exceeded.                                                                                                                                                                                                                                                                   |
| Overtemperature End Event        | Indicates when the die overtemperature threshold is no longer exceeded including 20°C of hysteresis.                                                                                                                                                                                                                                  |
| Thermal Warning Begin Event      | Indicates when the thermal warning threshold has been exceeded.                                                                                                                                                                                                                                                                       |
| Thermal Warning End Event        | Indicates that the die temperature was previously above the thermal warning threshold and has now dropped below the threshold.                                                                                                                                                                                                        |
| Speaker Current Event            | Indicates when the speaker amplifier current limit has been exceeded.                                                                                                                                                                                                                                                                 |
| Invalid Slot Event               | Indicates that a slot has been selected that is not available due to one or more of the following reasons:<br>The (number of bits per channel) x (channels per frame) does not allow for the selected slot (I <sup>2</sup> S mode only).<br>The number of BCLK cycles per frame does not allow for the selected slot (TDM mode only). |
| Thermal Foldback Event           | Indicates that the Thermal Foldback Limiter is operating in the attack or release phase.                                                                                                                                                                                                                                              |
| Thermal Foldback End Event       | Indicates that the die temperature was previously above the thermal threshold and has now dropped below the threshold.                                                                                                                                                                                                                |
| V <sub>PVDD</sub> Overflow Event | Indicates that the V <sub>PVDD</sub> supply voltage has reached the V <sub>PVDD</sub> ADC's maximum input level.                                                                                                                                                                                                                      |
| PVDD UVLO Event                  | Indicates that PVDD has dropped below the minimum allowed voltage.                                                                                                                                                                                                                                                                    |
| DHT Active Event                 | Indicates that the DHT circuit is applying compression to the signal.                                                                                                                                                                                                                                                                 |
| Limiter Active Event             | Indicates that the limiter circuit is applying a hard limit (infinite compression) to the signal.                                                                                                                                                                                                                                     |
| ICC Overcurrent Event            | Indicates that an overcurrent event is in progress on DOUT.                                                                                                                                                                                                                                                                           |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Table 3. Interrupt Registers**

#### Interrupt Status0

Interrupt Status bits reflect real-time fault conditions. If the fault condition is less than 3-4 LRCLK cycles, the Live Status bit holds high for 3–4 LRCLK cycles.

| ADDRESS | BIT | NAME             | DESCRIPTION                                                                                                                                                                                                                                |  |  |  |  |
|---------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|         | 7   | 0                | Unused: Read back is 0.                                                                                                                                                                                                                    |  |  |  |  |
|         | 6   | 0                | Unused: Read back is 0.                                                                                                                                                                                                                    |  |  |  |  |
|         | 5   | THERMFB_STATUS   | <ul><li>Die Thermal Foldback Status</li><li>0: The die temperature is below the thermal warning threshold.</li><li>1: The die temperature is above the thermal warning threshold and the signal is being dynamically attenuated.</li></ul> |  |  |  |  |
|         | 4   | 0                | Unused: Read back 0.                                                                                                                                                                                                                       |  |  |  |  |
| 0x01    | 3   | THERMWRN_STATUS  | <ul><li>Die Overtemperature Warning Status</li><li>0: The die temperature is below the thermal warning threshold.</li><li>1: The die temperature is above the thermal warning threshold.</li></ul>                                         |  |  |  |  |
|         | 2   | 0                | Unused: Read back is 0.                                                                                                                                                                                                                    |  |  |  |  |
|         | 1   | THERMSHDN_STATUS | <ul><li>Die Overtemperature Status</li><li>0: The die temperature is below the maximum die temperature.</li><li>1: The die temperature exceeds the maximum die temperature.</li></ul>                                                      |  |  |  |  |
|         | 0   | 0                | Unused: Read back 0.                                                                                                                                                                                                                       |  |  |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Table 3. Interrupt Registers (continued)**

#### Interrupt Status1

Interrupt Status bits reflect real-time fault conditions. If the fault condition is less than 3–4 LRCLK cycles, the Live Status bit holds high for 3–4 LRCLK cycles.

| ADDRESS | BIT | NAME             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|---------|-----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|         | 7   | 0                | Unused: Read back is 0.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|         | 6   | ICCOVC_STATUS    | ICC Overcurrent Status<br>0: No overcurrent event on the DOUT is in progress.<br>1: Overcurrent event on the DOUT is in progress.                                                                                                                                                                                                                                                                 |  |  |  |  |
|         | 5   | LMTRACT_STATUS   | Limiter Active Status<br>0: Limiter is not active.<br>1: Limiter is active.                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|         | 4   | INVALSLOT_STATUS | <ul> <li>Invalid Slot Status</li> <li>0: Slot is valid.</li> <li>1: Slot is invalid, one or more possible error conditions apply: <ul> <li>a. The (number of bits per channel) * (channels per frame)</li> <li>does not allow for the selected slot. (I2S mode only)</li> </ul> </li> <li>b. The number of BCLK cycles per frame does not allow for the selected slot.(TDM mode only).</li> </ul> |  |  |  |  |
| 0x02    | 3   | DHTACT_STATUS    | DHT Active Status           0: Dynamic Headroom Tracking is not attacking or releasing.           1: Dynamic Headroom Tracking is active and is attacking or releasir                                                                                                                                                                                                                             |  |  |  |  |
|         | 2   | SPKCURNT_STATUS  | Speaker Overcurrent Status<br>0: Speaker current is below the current limit.<br>1: Speaker current is above the current limit.                                                                                                                                                                                                                                                                    |  |  |  |  |
|         | 1   | PVDDOVFL_STATUS  | <ul> <li>PVDD Supply Voltage Monitor Overflow Status</li> <li>0: The PVDD supply voltage is below the PVDD ADC's maximum input level.</li> <li>1: The PVDD supply voltage has exceeded the PVDD ADC's maximum input level</li> </ul>                                                                                                                                                              |  |  |  |  |
|         | 0   | PVDDUVLO_STATUS  | <ul> <li>PVDD Supply Voltage Undervoltage Status</li> <li>0: The PVDD supply voltage is above the PVDD UVLO level.</li> <li>1: The PVDD supply voltage is below the PVDD UVLO threshold, and the speaker outputs are disabled.</li> </ul>                                                                                                                                                         |  |  |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| Interrupt State | e 0 |                     |                                                                                                                                                                                                                                                      |
|-----------------|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDRESS         | BIT | NAME                | DESCRIPTION                                                                                                                                                                                                                                          |
|                 | 7   | 0                   | Unused: Read back is 0.                                                                                                                                                                                                                              |
|                 | 6   | 0                   | Unused: Read back is 0.                                                                                                                                                                                                                              |
|                 | 5   | THERMFB_END_STATE   | <ul> <li>Die Thermal Foldback State End Event</li> <li>0: No falling edge on thermal foldback status is detected.</li> <li>1: A falling edge on thermal foldback status is detected.</li> <li>Note: Write a 1 to THERMFB_END_CLR to reset</li> </ul> |
|                 | 4   | THERMFB_BGN_STATE   | <ul> <li>Die Thermal Foldback State End Event</li> <li>0: No rising edge on thermal foldback status is detected.</li> <li>1: A rising edge on thermal foldback status is detected.</li> <li>Note: Write a 1 to THERMFB_BGN_CLR to reset.</li> </ul>  |
| 0x03            | 3   | THERMWRN_END_STATE  | Thermal Warning Status End Event<br>0: No falling edge on THERMWRN_STATUS is detected.<br>1: A falling edge on THERMWRN_STATUS is detected.<br>Note: Write a 1 to THERMWRN_END_CLR to reset.                                                         |
|                 | 2   | THERMWRN_BGN_STATE  | Thermal Warning Status Begin Event<br>0: No rising edge on THERMWRN_STATUS is detected.<br>1: A rising edge on THERMWRN_STATUS is detected.<br>Note: Write a 1 to THERMWRN_BGN_CLR to reset.                                                         |
|                 | 1   | THERMSHDN_END_STATE | Thermal Shutdown End Event         0: No falling edge on THERMSHDN_STATUS is detected.         1: A falling edge on THERMSHDN_STATUS is detected.         Note: Write a 1 to THERMSHDN_END_CLR to reset.                                             |
|                 | 0   | THERMSHDN_BGN_STATE | Thermal Shutdown Begin Event0: No rising edge on THERMSHDN_STATUS is detected.1: A rising edge on THERMSHDN_STATUS is detected.Note: Write a 1 to THERMSHDN_BGN_CLR to reset.                                                                        |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| Interrupt State 1 |     |                 |                                                                                                                                                                                                                                            |  |
|-------------------|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADDRESS           | BIT | NAME            | DESCRIPTION                                                                                                                                                                                                                                |  |
| 0x04              | 7   | 0               | Unused: Read back is 0.                                                                                                                                                                                                                    |  |
|                   | 6   | ICCOVC_STATE    | ICC Overcurrent Event<br>0: No rising edge on ICCOVC_STATUS is detected.<br>1: A rising edge on ICCOVC_STATUS is detected.<br>Note: Write a 1 to ICCOVC_CLR to reset.                                                                      |  |
|                   | 5   | LMTRACT_STATE   | Limiter Active Event<br>0: No rising edge on LMTRACT_STATUS is detected.<br>1: A rising edge on LMTRACT_STATUS is detected.<br>Note: Write a 1 to LMTRACT_CLR to reset.                                                                    |  |
|                   | 4   | INVALSLOT_STATE | Invalid Slot Event<br>0: No rising edge on INVALSLOT_STATUS is detected.<br>1: A rising edge on INVALSLOT_STATUS is detected.<br>Note: Write a 1 to INVALSLOT_CLR to reset.                                                                |  |
|                   | 3   | DHTACT_STATE    | DHT Active Event         0: No rising edge on DHTACT_STATUS is detected.         1: A rising edge on DHTACT_STATUS is detected.         Note: Write a 1 to DHTACT_STATUS to reset.                                                         |  |
|                   | 2   | SPKCURNT_STATE  | Speaker Overcurrent Event<br>0: No rising edge on SPKCURNT_STATUS is detected.<br>1: A rising edge on SPKCURNT_STATUS is detected.<br>Note: Write a 1 to SPKCURNT_CLR to reset.                                                            |  |
|                   | 1   | PVDDOVFL_STATE  | PVDD ADC Overflow Event         0: No rising edge on PVDDOVFL_STATUS is detected.         1: A rising edge on PVDDOVFL_STATUS is detected.         Note: Write a 1 to PVDDOVFL_CLR to reset.                                               |  |
|                   | 0   | PVDDUVLO_STATE  | <ul> <li>PVDD Supply Voltage Undervoltage Lockout Event</li> <li>0: No rising edge on PVDDUVLO_STATUS is detected.</li> <li>1: A rising edge on PVDDUVLO_STATUS is detected.</li> <li>Note: Write a 1 to PVDDOVFL_CLR to reset.</li> </ul> |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| Interrupt Flag 0 |     |                    |                                                                                                                                                     |  |
|------------------|-----|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADDRESS          | BIT | NAME               | DESCRIPTION                                                                                                                                         |  |
| 0x05             | 7   | 0                  | Unused: Read back is 0.                                                                                                                             |  |
|                  | 6   | 0                  | Unused: Read back is 0.                                                                                                                             |  |
|                  | 5   | THERMFB_END_FLAG   | <b>Die Thermal Foldback End Flag</b><br>0: No thermal foldback end interrupt is generated.<br>1: Thermal foldback end interrupt is generated.       |  |
|                  | 4   | THERMFB_BGN_FLAG   | <b>Die Thermal Foldback Begin Flag</b><br>0: No thermal foldback begin interrupt is generated.<br>1: Thermal foldback begin interrupt is generated. |  |
|                  | 3   | THERMWRN_END_FLAG  | <b>Thermal Warning End Flag</b><br>0: No thermal warning end is interrupt generated.<br>1: Thermal warning end interrupt is generated.              |  |
|                  | 2   | THERMWRN_BGN_FLAG  | <b>Thermal Warning Begin Flag</b><br>0: No thermal warning begin interrupt is generated.<br>1: Thermal warning begin interrupt is generated.        |  |
|                  | 1   | THERMSHDN_END_FLAG | Thermal Shutdown End Flag0: No thermal shutdown end interrupt is generated.1: Thermal shutdown end interrupt is generated.                          |  |
|                  | 0   | THERMSHDN_BGN_FLAG | Thermal Shutdown Begin Flag0: No thermal shutdown begin interrupt is generated.1: Thermal shutdown begin interrupt is generated.                    |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| Interrupt Flag 1 |     |                |                                                                                                                                                                                        |  |  |
|------------------|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ADDRESS          | BIT | NAME           | DESCRIPTION                                                                                                                                                                            |  |  |
| 0x06             | 7   | 0              | Unused: Read back 0.                                                                                                                                                                   |  |  |
|                  | 6   | ICCOVC_FLAG    | ICC Overcurrent Flag<br>0: No ICC overcurrent interrupt is generated.<br>1: ICC overcurrent interrupt is generated.                                                                    |  |  |
|                  | 5   | LMTRACT_FLAG   | Limiter Active Flag<br>0: No limiter active interrupt is generated.<br>1: Limiter active interrupt is generated.                                                                       |  |  |
|                  | 4   | INVALSLOT_FLAG | Invalid Slot Flag<br>0: No invalid slot interrupt is generated.<br>1: Invalid slot interrupt is generated.                                                                             |  |  |
|                  | 3   | DHTACT_FLAG    | <ul><li>DHT Active Flag</li><li>0: No Dynamic Headroom Tracking active slot interrupt is generated.</li><li>1: Dynamic Headroom Tracking active slot interrupt is generated.</li></ul> |  |  |
|                  | 2   | SPKCURNT_FLAG  | <ul><li>Speaker Overcurrent Flag</li><li>0: No speaker overcurrent interrupt is generated.</li><li>1: Speaker overcurrent interrupt is generated.</li></ul>                            |  |  |
|                  | 1   | PVDDOVFL_FLAG  | PVDD ADC Overflow Flag0: No PVDD ADC overflow interrupt is generated.1: PVDD ADC overflow interrupt is generated.                                                                      |  |  |
|                  | 0   | PVDDUVLO_FLAG  | PVDD Supply Voltage Undervoltage Lockout Flag0: No PVDD UVLO Interrupt is generated.1: PVDD UVLO Interrupt is generated.                                                               |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| Interrupt Enable 0 |     |                   |                                                                                                                                                                                                                         |  |
|--------------------|-----|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ADDRESS            | BIT | NAME              | DESCRIPTION                                                                                                                                                                                                             |  |
| 0x07               | 7   | 0                 | Unused: Read back is 0.                                                                                                                                                                                                 |  |
|                    | 6   | 0                 | Unused: Read back is 0.                                                                                                                                                                                                 |  |
|                    | 5   | THERMFB_END_EN    | <ul> <li>Die Thermal Foldback End Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMFB_END_FLAG transitions from 0 to 1.</li> </ul>           |  |
|                    | 4   | THERMFB_BGN_EN    | <ul> <li>Die Thermal Foldback Begin Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMFB_END_FLAG transitions from 0 to 1.</li> </ul>         |  |
|                    | 3   | THERMWRN_END_ EN  | <ul> <li>Thermal Warning End Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMWRN_END_</li> <li>FLAG transitions from 0 to 1.</li> </ul>     |  |
|                    | 2   | THERMWRN_BGN_ EN  | <ul> <li>Thermal Warning Begin Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMWRN_BGN_</li> <li>FLAG transitions from 0 to 1.</li> </ul>   |  |
|                    | 1   | THERMSHDN_END_ EN | <ul> <li>Thermal Shutdown End Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMSHDN_END_</li> <li>FLAG transitions from 0 to 1.</li> </ul>   |  |
|                    | 0   | THERMSHDN_BGN_ EN | <ul> <li>Thermal Shutdown Begin Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when THERMSHDN_BGN_</li> <li>FLAG transitions from 0 to 1.</li> </ul> |  |
# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

# Table 3. Interrupt Registers (continued)

| Interrupt Ena | Interrupt Enable 1 |              |                                                                                                                                                                                                                            |  |  |
|---------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ADDRESS       | BIT                | NAME         | DESCRIPTION                                                                                                                                                                                                                |  |  |
|               | 7                  | 0            | Unused: Read back is 0.                                                                                                                                                                                                    |  |  |
|               | 6                  | ICCOVC_EN    | <ul> <li>ICC Overcurrent Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when ICCOVC_FLAG transitions from 0 to 1.</li> </ul>                                      |  |  |
|               | 5                  | LMTRACT_EN   | Limiter Active Interrupt Enable<br>0: Interrupt is disabled (default).<br>1: Interrupt is enabled. IRQ is pulled low when LMTRACT_FLAG<br>transitions from 0 to 1.                                                         |  |  |
|               | 4                  | INVALSLOT_EN | Invalid Slot Interrupt Enable<br>0: Interrupt is disabled (default).<br>1: Interrupt enabled. IRQ is pulled low when INVALSLOT_FLAG<br>transitions from 0 to 1.                                                            |  |  |
| 0x08          | 3                  | DHTACT_EN    | DHT Active Interrupt Enable           0: Interrupt is disabled (default).           1: Interrupt is enabled. IRQ is pulled low when DHTACT_FLAG transitions from 0 to 1.                                                   |  |  |
|               | 2                  | SPKCURNT_EN  | Speaker Overcurrent Interrupt Enable<br>0: Interrupt is disabled (default).<br>1: Interrupt is enabled. IRQ is pulled low when SPKCURNT_FLAG<br>transitions from 0 to 1.                                                   |  |  |
|               | 1                  | PVDDOVFL_EN  | PVDD ADC Overflow Interrupt Enable           0: Interrupt is disabled (default).           1: Interrupt is enabled. IRQ is pulled low when PVDDOVFL_FLAG transitions from 0 to 1.                                          |  |  |
|               | 0                  | PVDDUVLO_EN  | <ul> <li>PVDD Supply Voltage Undervoltage Lockout Interrupt Enable</li> <li>0: Interrupt is disabled (default).</li> <li>1: Interrupt is enabled. IRQ is pulled low when PVDDUVLO_FLAG transitions from 0 to 1.</li> </ul> |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

# Table 3. Interrupt Registers (continued)

| Interrupt Clea | Interrupt Clear 0 |                   |                                                                                                                                             |  |  |
|----------------|-------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ADDRESS        | BIT               | NAME              | DESCRIPTION                                                                                                                                 |  |  |
|                | 7                 | 0                 | Unused: Read back is 0.                                                                                                                     |  |  |
|                | 6                 | 0                 | Unused: Read back is 0.                                                                                                                     |  |  |
|                | 5                 | THERMFB_END_CLR   | <b>Die Thermal Foldback End Interrupt Clear</b><br>0: No effect.<br>1: Clears the THERMFB_END_STATE and THERMFB_END_FLAG.                   |  |  |
|                | 4                 | THERMFB_BGN_CLR   | <b>Die Thermal Foldback Begin Interrupt Clear</b><br>0: No effect.<br>1: Clears the THERMFB_BGN_STATE and THERMFB_BGN_FLAG.                 |  |  |
| 0x09           | 3                 | THERMWRN_END_CLR  | Thermal Warning End Interrupt Clear           0: No effect.           1: Clears the THERMWRN_END_STATE and THERMWRN_END_           FLAG.    |  |  |
|                | 2                 | THERMWRN_BGN_CLR  | Thermal Warning Begin Interrupt Clear           0: No effect.           1: Clears the THERMWRN_BGN_STATE and THERMWRN_BGN_           FLAG.  |  |  |
|                | 1                 | THERMSHDN_END_CLR | Thermal Shutdown End Interrupt Clear           0: No effect.           1: Clears the THERMSHDN_END_STATE and THERMSHDN_END_           FLAG. |  |  |
|                | 0                 | THERMSHDN_BGN_CLR | Thermal Shutdown Begin Interrupt Clear         0: No effect.         1: Clears the THERMSHDN_BGN_STATE and THERMSHDN_BGN_         FLAG.     |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

# Table 3. Interrupt Registers (continued)

| Interrupt Clea | Interrupt Clear 1 |               |                                                                                                                                            |  |  |  |
|----------------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ADDRESS        | BIT               | NAME          | DESCRIPTION                                                                                                                                |  |  |  |
|                | 7                 | 0             | Unused: Read back 0.                                                                                                                       |  |  |  |
|                | 6                 | ICCOVC_CLR    | ICC Overcurrent Clear<br>0: No effect.<br>1: Clears the ICCOVC_STATE and ICCOVC_FLAG.                                                      |  |  |  |
|                | 5                 | LMTRACT_CLR   | Limiter Active Interrupt Clear<br>0: No effect.<br>1: Clears the LMTRACT_STATE and LMTRACT_FLAG.                                           |  |  |  |
|                | 4                 | INVALSLOT_CLR | Invalid Slot Interrupt Clear<br>0: No effect.<br>1: Clears the INVALSLOT_STATE and INVALSLOT_FLAG.                                         |  |  |  |
| 0x0A           | 3                 | DHTACT_CLR    | <b>DHT Active Interrupt Clear</b><br>0: No effect.<br>1: Clears the DHTACT_STATE and DHTACT_FLAG.                                          |  |  |  |
|                | 2                 | SPKCURNT_CLR  | Speaker Overcurrent Interrupt Clear<br>0: No effect.<br>1: Clears the SPKCURNT_STATE and SPKCURNT_FLAG.                                    |  |  |  |
|                | 1                 | PVDDOVFL_CLR  | PVDD ADC Overflow Interrupt Clear           0: No effect.           1: Clears the PVDDOVFL_STATE and PVDDOVFL_FLAG.                        |  |  |  |
|                | 0                 | PVDDUVLO_CLR  | PVDD Supply Voltage Undervoltage Lockout Interrupt Clear           0: No effect.           1: Clears the PVDDUVLO_STATE and PVDDUVLO_FLAG. |  |  |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Digital Audio Interface**

The digital audio interface (DAI) is highly flexible, supporting common sample rates (Table 4) with 16/24/ 32-bit depth for I<sup>2</sup>S/Left-Justified data as well as up to 16 slots in a time division multiplexed (TDM) format.

 Table 4. Supported Sample Rates

Operating in slave mode only, the MAX98371 eliminates the need for the external MCLK signal that is typically used in I<sup>2</sup>S applications by generating MCLK internally. This reduces EMI and improves the RF immunity of the IC. <u>Table 5</u> lists the supported BCLK frequencies when operating in this mode.

| ADDRESS | BIT | NAME        | DESCRIPTION                                            |  |
|---------|-----|-------------|--------------------------------------------------------|--|
|         | 3   | SPK_SR[3:0] | Speaker Path Sample Rate Select<br>0000–0101: Reserved |  |
| 0.44    | 2   |             | 0110: 32kHz<br>0111: 44.1kHz                           |  |
| 0x11    | 1   |             | 1000: 48kHz<br>1001: Reserved<br>1010: 88.2kHz         |  |
|         | 0   |             | 1011: 96kHz<br>1100–1111: Reserved                     |  |

### Table 5. Supported BCLK Rates in Slave Mode

| ADDRESS | BIT | NAME      | DESCRIPTION                                                                       |  |
|---------|-----|-----------|-----------------------------------------------------------------------------------|--|
|         | 3   |           | Selects the Number of BCLKs/LRCLK<br>0000: Not supported<br>0001: Not supported   |  |
|         | 2   |           | 0010: 32 BCLKs<br>0011: 48 BCLKs<br>0100: 64 BCLKs                                |  |
| 0x10    | 1   | BSEL[3:0] | 0101: 96 BCLKs<br>0110: 128 BCLKs<br>0111: 192 BCLKs                              |  |
|         | 0   |           | 1000: 256 BCLKs<br>1001: 384 BCLKs<br>1010: 512 BCLKs<br>1011–1111: Not supported |  |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Interface Format**

The MAX98371 supports standard I<sup>2</sup>S, left-justified, and TDM data formats. I<sup>2</sup>S and Left-Justified formats support two audio channels of 16, 24 or 32-bit depth. TDM supports up to 16 audio channels of 16-, 24-, or 32-bit depth. The IC supports slave operation only, and the LRCLK and BCLK pins operate as inputs.

I<sup>2</sup>S (Figure 5) and Left-Justified (Figure 6) modes configure the LRCLK signal to transition before each channel. With the default I<sup>2</sup>S settings LRCLK low indicates left channel while LRCLK high indicates the right channel. The MSB of the audio word is latched on the second active BCLK edge after an LRCLK transition. In Left-Justified mode, the MSB of the audio word is latched on the first active BCLK edge after an LRCLK transition. TDM mode (Figure 7) uses a frame sync pulse instead of a 50% duty cycle frame clock. The frame sync pulse (applied to the LRCLK pin) is equal to one BCLK period as a minimum, although the interface operates with longer periods; the rising edge of LRCLK is used to indicate the start of a new frame. The falling edge can occur at any time as long as it does not violate the setup time requirements of the LRCLK rising edge. In TDM, latch the MSB of the first audio word on the first or second active BCLK edge after an LRCLK rising edge.

### **Configuring the DAI Format**

Specify the format by configuring the LRCLK invert, BCLK active edge, data delay, and TDM mode configuration bits (Table 6).

#### ADDRESS віт NAME DESCRIPTION 7 **Configures Channel Word Length** CHANSZ[1:0] 00: 8 bits 10: 24 bits 6 01: 16 bits 11: 32 bits PCM Format Select 5 000: I<sup>2</sup>S mode 001: Left-Justified FORMAT[2:0] 010: Right-Justified 4 011: TDM Mode 1 100: TDM Mode 2 3 101-111: Reserved 0x14 Active BCLK Edge Select 0: Data captured and valid on rising edge of BCLK 2 BCLEDGE 1: Data captured and valid on the falling edge of BCLK Non-TDM LRCLK Starting Edge 0: Falling LRCLK indicates the start of a stereo pair. Channel 0 when 1 CHANSEL LRCLK is low, Channel 1 when LRCLK is high. 1: Rising LRCLK indicates the start of a stereo pair. Channel 0 when LRCLK is high, Channel 1 when LRCLK is low. 0 0 0

### Table 6. Configuration for Digital Audio Interface Format

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Configuring the Digital Audio Input**

The DAI may be configured to accept a mono PCM input, placed from anywhere from slots 1 to 16 of digital audio in TDM mode. In  $I^2S$  and Left-Justified modes, two channels are available.

Route mono data directly to the speaker amplifier. If the input is stereo, input the right channel to the device and mix with the left channel if desired. Sum left and right channels with the amplitude divided by 2 to reduce the DAC input and avoid saturation. Stereo summing and L or R choices are limited to 2 adjacent slots on the TDM bus.

## Table 7. Configuration for Digital Audio Interface Format

| ADDRESS | BIT | NAME      | DESCRIPTION                                                                                     |
|---------|-----|-----------|-------------------------------------------------------------------------------------------------|
|         | 7   | RX_CH7_EN | Receive Channel Enable<br>0: Receive channel 7 is disabled.<br>1: Receive channel 7 is enabled. |
|         | 6   | RX_CH6_EN | Receive Channel Enable<br>0: Receive channel 6 is disabled.<br>1: Receive channel 6 is enabled. |
|         | 5   | RX_CH5_EN | Receive Channel Enable<br>0: Receive channel 5 is disabled.<br>1: Receive channel 5 is enabled. |
| 0x15    | 4   | RX_CH4_EN | Receive Channel Enable<br>0: Receive channel 4 is disabled.<br>1: Receive channel 4 is enabled. |
| 0.15    | 3   | RX_CH3_EN | Receive Channel Enable<br>0: Receive channel 3 is disabled.<br>1: Receive channel 3 is enabled. |
|         | 2   | RX_CH2_EN | Receive Channel Enable<br>0: Receive channel 2 is disabled.<br>1: Receive channel 2 is enabled. |
|         | 1   | RX_CH1_EN | Receive Channel Enable<br>0: Receive channel 1 is disabled.<br>1: Receive channel 1 is enabled. |
|         | 0   | RX_CH0_EN | Receive Channel Enable<br>0: Receive channel 0 is disabled.<br>1: Receive channel 0 is enabled. |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 7. Configuration for Digital Audio Interface Format (continued)

| ADDRESS | BIT | NAME       | DESCRIPTION                                                                                       |
|---------|-----|------------|---------------------------------------------------------------------------------------------------|
|         | 7   | RX_CH15_EN | Receive Channel Enable0: Receive channel 15 is disabled.1: Receive channel 15 is enabled.         |
|         | 6   | RX_CH14_EN | Receive Channel Enable<br>0: Receive channel 14 is disabled.<br>1: Receive channel 14 is enabled. |
|         | 5   | RX_CH13_EN | Receive Channel Enable<br>0: Receive channel 13 is disabled.<br>1: Receive channel 13 is enabled. |
| 0x16    | 4   | RX_CH12_EN | Receive Channel Enable<br>0: Receive channel 12 is disabled.<br>1: Receive channel 12 is enabled. |
| 0.10    | 3   | RX_CH11_EN | Receive Channel Enable<br>0: Receive channel 11 is disabled.<br>1: Receive channel 11 is enabled. |
|         | 2   | RX_CH10_EN | Receive Channel Enable<br>0: Receive channel 10 is disabled.<br>1: Receive channel 10 is enabled. |
|         | 1   | RX_CH9_EN  | Receive Channel Enable<br>0: Receive channel 9 is disabled.<br>1: Receive channel 9 is enabled.   |
|         | 0   | RX_CH8_EN  | Receive Channel Enable0: Receive channel 8 is disabled.1: Receive channel 8 is enabled.           |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 8. TDM Channel Selection for Mono Replay

| ADDRESS | BIT | NAME                     | DESCRIPTION                                                                                                                            |
|---------|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|         | 7   |                          | Digital Monomix Source Selection                                                                                                       |
|         | 6   |                          | 0000: Channel 1 gets PCM RX channel 0.<br>0001: Channel 1 gets PCM RX channel 1.                                                       |
|         | 5   | DMONOMIX_CH1_SOURCE[3:0] | 0010: Channel 1 gets PCM RX channel 2.<br>0011: Channel 1 gets PCM RX channel 3.                                                       |
| 0.40    | 4   |                          | <br>1111: Channel 1 gets PCM RX channel 15.                                                                                            |
| 0x18    | 3   | DMONOMIX_CH0_SOURCE[3:0] | Digital Monomix Source Selection                                                                                                       |
|         | 2   |                          | 0000: Channel 0 gets PCM RX channel 0.<br>0001: Channel 0 gets PCM RX channel 1.                                                       |
|         | 1   |                          | 0010: Channel 0 gets PCM RX channel 2.<br>0011: Channel 0 gets PCM RX channel 3.                                                       |
|         | 0   |                          | <br>1111: Channel 0 gets PCM RX channel 15.                                                                                            |
| 0.40    | 1   |                          | Monomix Configuration<br>00: Output of Monomix is channel 0.                                                                           |
| 0x19    | 0   | DMONOMIX_CFG[1:0]        | <ul><li>01: Output of Monomix is channel 1.</li><li>10: Output of Monomix is (channel 0 + channel 1)/2.</li><li>11: Reserved</li></ul> |



Figure 5. I<sup>2</sup>S Digital Audio Format Examples

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking



Figure 6. Left-Justified Digital Audio Format Examples

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking



Figure 7. TDM Digital Audio Format Examples

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Digital Passband Filtering**

The MAX98371 features an optional highpass filter with selectable corner frequency (50Hz, 100Hz, 200Hz, 400Hz, and 800Hz), or a DC blocking filter with a cutoff frequency of 2Hz (80dB attenuation). The MAX98371 supports 5 sample rates: 32kHz, 44.1kHz, 48kHz, 88.2kHz or 96KHz. For 32kHz, 44.1kHz and 48kHz, a linear phase, half-band filter effectively defines the response. For 96kHz operation, a different filter characteristic is employed with a smooth roll off above 20kHz. Set the digital highpass filter corner frequency though the DACHPF bits in control register 0x1C (Table 9). Create user-programmed filtering

through the biquad filter coefficients by setting the DACHPF[2:0] bits to 111. See the Biquad Filter section.

The MAX98371 also features a configurable PVDD ADC filter. This cutoff frequency of this filter can be adjusted by setting the PVDD\_ADC\_BW bits in register 0x1C. These filtered PVDD ADC measurements can be fed to the DHT or limiter. Filtered or unfiltered PVDD ADC readings can be sent to the DHT and limiter. To send filtered data to the limiter or DHT, set the PVDD\_FILT\_TO\_LMTR or PVDD\_FILT\_TO\_DHT bits, respectively. See <u>Table 9</u>.

| ADDRESS | BIT | NAME              | DESCRIPTION                                                                                                                               |
|---------|-----|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|         | 7   | PVDD_FILT_TO_LMTR | 0: Unfiltered PVDD ADC measurements are sent to the limiter.<br>1: Lowpass filtered PVDD ADC measurements are sent to limiter.            |
|         | 6   | PVDD_FILT_TO_DHT  | <ul><li>0: Unfiltered PVDD ADC measurements are sent to DHT.</li><li>1: Lowpass filtered PVDD ADC measurements are sent to DHT.</li></ul> |
|         | 5   |                   | PVDD ADC Lowpass Filter Selection<br>00: Pass through, filter off<br>01: 2Hz cutoff                                                       |
|         | 4   | PVDD_ADC_BW[1:0]  | 10: 20Hz cutoff<br>11: 200Hz cutoff                                                                                                       |
| 0x1C    | 3   | 0                 | 0                                                                                                                                         |
|         | 2   | DACHPF[2:0]       | <b>Digital Highpass Filter</b><br>000: Pass through, filter off<br>001: DC blocker is enabled.                                            |
|         | 1   |                   | 010: 50Hz HPF is enabled.<br>011: 100Hz HPF is enabled.<br>100: 200Hz HPF is enabled.<br>101: 400Hz HPF is enabled.                       |
|         | 0   | 1                 | 110: 800Hz HPF is enabled.<br>111: User programmable using DAC_BQ_B[0–2] and DAC_BQ_A[1–2]<br>registers                                   |

## **Table 9. Digital Highpass Filter**

## Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Biquad Filter**

The digital biquad filter has five user-programmable coefficients (B0, B1, B2, A1, and A2), and each individual coefficient is 3 bytes (24 bits) long (A0 is fixed at 1). They occupy 15 consecutive registers (<u>Table 10</u>) and each set of three registers (per coefficient) must be programmed consecutively for the settings to take effect. The coefficients are stored using a two's complement format where the first 4 bits are the integer portion and the last 20 bits are the decimal portion that results in an approximate +8 to -8 range for each coefficient.

The digital biquad coefficients are uninitialized at powerup, and if the filter is going to be used, the coefficients must be programmed before the device and biquad filter are enabled. The transfer function is:

$$H(z) = \frac{B_0 + B_1 * Z^{-1} + B_2 * Z^{-2}}{1 + A_1 * Z^{-1} + A_2 * Z^{-2}}$$

### Signal Path Delay

Delay through the signal path is minimized by use of efficient signal processing and hardware DSP. Delay is affected by the configuration of various blocks and filters in the signal path. Typical delay, listed in number of audio samples, is shown in Table 11.

## Table 10. Biquad Filter Coefficient Registers

| REG  | REG NAME                 | R/W | BIT NAME  | VALUE |
|------|--------------------------|-----|-----------|-------|
| 0x1D |                          | R/W | B0[23:16] | 0x00  |
| 0x1E | Biquad<br>Coefficient B0 | R/W | B0[15:8]  | 0x00  |
| 0x1F | Coefficient Do           | R/W | B0[7:0]   | 0x00  |
| 0x20 |                          | R/W | B1[23:16] | 0x00  |
| 0x21 | Biquad<br>Coefficient B1 | R/W | B1[15:8]  | 0x00  |
| 0x22 |                          | R/W | B1[7:0]   | 0x00  |
| 0x23 |                          | R/W | B2[23:16] | 0x00  |
| 0x24 | Biquad<br>Coefficient B2 | R/W | B2[15:8]  | 0x00  |
| 0x25 |                          | R/W | B2[7:0]   | 0x00  |
| 0x26 | 5.                       | R/W | A1[23:16] | 0x00  |
| 0x27 | Biquad<br>Coefficient A1 | R/W | A1[15:8]  | 0x00  |
| 0x28 | Obenicient AT            | R/W | A1[7:0]   | 0x00  |
| 0x29 | 5.                       | R/W | A2[23:16] | 0x00  |
| 0x2A | Biquad<br>Coefficient A2 | R/W | A2[15:8]  | 0x00  |
| 0x2B | Obenicient Az            | R/W | A2[7:0]   | 0x00  |

### Table 11. Signal Path Delay

| SAMPLE RATE | DELAY (SAMPLES) |
|-------------|-----------------|
| 32k         | 19              |
| 44.1k       | 19              |
| 48k         | 18              |
| 88.2k       | 15              |
| 96k         | 14              |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **PVDD ADC**

The PVDD ADC has an effective 8kHz sample rate, 8-bit resolution and full scale input of 18V. The bandwidth of the output is user programmable to reject both high frequency and audio band noise from the supply, and to tradeoff reaction time to follow the supply accurately. The PVDD\_ADC values are used to by the DHT and Limiter circuits. These values can be read back over I<sup>2</sup>C through the PVDD\_ADC Register located at 0x34. See Table 12.

### **Table 12. PVDD Measurement ADC**

The PVDD ADC readback is real time and is dependant on the "PVDD\_ADC\_BW" register setting in register 0x1C.

### **Digital Volume Control**

A user-controlled digital volume control with an attenuation range of 0dB to -63dB in 0.5dB steps, as well as a mute setting is available. Volume ramping is available and configurable with through the DVOL\_RAMP\_BYP bit in the digital volume control register. See Table 13.

| ADDRESS | BIT | NAME          | DESCRIPTION                          |
|---------|-----|---------------|--------------------------------------|
|         | 7   |               |                                      |
|         | 6   |               | 0: 5.35V                             |
|         | 5   |               | 1: 5.40V<br>2: 5.45V<br>3: 5.50V<br> |
| 024     | 4   |               |                                      |
| 0x34    | 3   | PVDD_ADC[7:0] |                                      |
|         | 2   |               | 253: 18.05V<br>254: 18.10V           |
|         | 1   |               | 255: 18.15V                          |
|         | 0   |               |                                      |

### Table 13. Digital Volume Ramping and Digital Volume

| ADDRESS | BIT | NAME          | DESCRIPTION                                                                                                                                   |
|---------|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|         | 7   | DVOL_RAMP_BYP | <b>Digital Volume Ramp Bypass</b><br>0: Ramping is enabled at startup, shutdown and all volume changes.<br>1: All volume ramping is disabled. |
|         | 6   |               | Digital Volume Control                                                                                                                        |
|         | 5   |               | 0: 0dB<br>1: -0.5dB                                                                                                                           |
| 0x2D    | 4   |               | 2: -1.0dB                                                                                                                                     |
|         | 3   | DVOL[6:0]     | 3: -1.5dB                                                                                                                                     |
|         | 2   |               | <br>195- 69 EdD                                                                                                                               |
|         | 1   |               | 125: -62.5dB<br>126: -63.0dB                                                                                                                  |
|         | 0   |               | 127: Digital mute                                                                                                                             |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Output Voltage Scaling**

The MAX98371 operates over a large supply voltage range. As a result, the part must be configured to scale the output signals across possible PVDD supply range. SPK\_GAIN\_MAX applies gain after the DAC to achieve this voltage scaling.

Digital gain can be applied before the DAC by using the DPGA\_CLIP register. In conjunction with the SPK\_GAIN\_MAX setting, the overall full-scale behavior of the device is set.

# The DPGA and SPK\_GAIN\_MAX register settings are shown in Table 14.

Gain through the signal path is referenced to the full-scale output of the DAC, which is 2.1dBV. The MAX98371 output level can be calculated based on the digital input signal level and selected amplifier gain.

Output signal level (dBV) = input signal level (dBFS) + 2.1dBV + SPK\_GAIN\_MAX (dB)

where 0dBFS is referenced to 0dBV.

## Table 14. Digital Gain Settings and Output Voltage Scaling

| BIT | NAME                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|---------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   |                                 | -                                                                    | Settings (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6   |                                 | 0000: 0<br>0001: 0.5                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0110: 3.0<br>0111: 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | DPGA_CLIP[3:0]                  | 0010: 1.0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000: 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   |                                 | 0011: 1.5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1001: 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   |                                 | 0100: 2.0<br>0101: 2.5                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1010: 6.0<br>1011–1111: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                 | Speaker No                                                           | -Load Outp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ut Voltage Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3   |                                 | -                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                 |                                                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Guaranteed no clipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                                 |                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Best near 5.5V (min) operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2   |                                 |                                                                      | ```                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -   |                                 |                                                                      | · ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-cell Li-ion operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | SPK GAIN MAX[3:0]               | 0101: 9.56                                                           | (14.5dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                 | 0110: 10.72                                                          | (15.5dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1   |                                 |                                                                      | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12V nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                 |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-cell Li-ion operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                 |                                                                      | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0   |                                 |                                                                      | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Optimum for 16.5V PVDD operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                 |                                                                      | (∠0.50B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 7<br>6<br>5<br>4<br>3<br>2<br>1 | 7       6         6       DPGA_CLIP[3:0]         5       4         3 | 7         Digital Gain<br>0000: 0           6         0001: 0.5           5         0010: 1.0           5         0010: 2.0           4         0100: 2.0           0101: 2.5         0101: 2.5           3         Speaker No           2         0001: 6.03           1         SPK_GAIN_MAX[3:0]           1         0101: 12.5           2         0101: 6.03           0010: 6.77           0010: 8.52           0101: 9.56           0101: 10.72           0111: 12.03           1000: 13.5           1001: 15.15           0101: 15.15           1010: 16.99 | 7         Digital Gain Settings (d<br>0000: 0           6         0001: 0.5           5         0010: 1.0           5         0010: 2.0           4         0100: 2.0           3         Sets the output voltage le<br>0000: 6.77 (11.5dB)           0011: 7.59 (12.5dB)         0010: 6.77 (11.5dB)           0100: 8.52 (13.5dB)         0101: 9.56 (14.5dB)           0101: 10.72 (15.5dB)         0101: 10.72 (15.5dB)           0101: 15.15 (18.5dB)         1000: 13.5 (17.5dB)           0         1001: 15.15 (18.5dB)           0         1011: 19.07 (20.5dB) |

## Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Dynamic Headroom Tracking**

The MAX98371 features Dynamic Headroom Tracking (DHT) to preserve consistant dynamic range in the presence of a varying supply. DHT maintains consistent volume and listening levels up to a predefined point, below full scale. DHT maintains the headroom of the amplifier at signal peaks that occur above this level (referred to as the rotation point or RP) up to full scale to ensure consistent, smooth compression of these signals in the presence of supply variations.

A key element in tracking available headroom is the PVDD ADC. The output of the ADC feeds the DHT circuitry with the necessary inputs to calculate the amount of compression (if any) applied to signal peaks. Filtering can be applied to the PVDD ADC readings used by the DHT by using the PVDD\_FILT\_TO\_DHT bit (Table 9).

The Dynamic Headroom Tracking function relies heavily on two parameters to be effective. The first is the SPK\_GAIN\_MAX setting explained in the *Output Voltage Scaling* section. This sets the maximum no-load peak output voltage ( $V_{MPO}$ ) that the class D amplifier reproduces when fed with a full-scale (0dBFS) signal. The second parameter is the Rotation point (RP). The rotation point sets the level in dBFS above which compression is applied to the output signal, if the PVDD voltage level drops below V<sub>MPO</sub>.

DHT uses a parameter called SPK\_GAIN\_MIN to control the maximum compresion ratio. This parameter can enable the addition of a second inflection point on the Transfer fuction.

The behavior of DHT has 3 modes, depending on the measured value of  $V_{PVDD}$  by the PVDD ADC:



Figure 8. Example of Dynamic Headroom Tracking in Mode 1 Operation

**MODE 1:** PVDD voltage is greater than maximum peak output voltage. If  $V_{PVDD}$  is greater than  $V_{MPO}$  then there is no action taken by the DHT block. There is sufficient headroom for the amplifier to linearly represent any signal up to and including 0dBFS; the signal transfer function is unaffected.

**MODE 2:** V<sub>PVDD</sub> is less than V<sub>MPO</sub>, and greater than the output voltage as set by the Rotation Point register setting (V<sub>EXP\_RP</sub>). For example, if the RP is set for -6dBFS, then the peak voltage on the output (V<sub>EXP\_RP</sub>) would be V<sub>MPO</sub>/2). If this is the case, the transfer function for signals below the RP is reproduced exactly as in Mode 1. Any signals between RP and 0dBFS are now subject to

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

an audio compression function, acting in the DSP block of the MAX98371. This acts with appropriate attenuation for peaks over the RP in magnitude with programmable attack and release times (see DHT Ballistics). Figure 9 and 10 show the effect on the transfer function.



Figure 9. Example of Dynamic Headroom Tracking in Mode 2 Operation with a High RP

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking



Figure 10. Example of Dynamic Headroom Tracking in Mode 2 Operation with a Low RP

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

The compression ratios in Mode 2 are effectively defined by the combination of: PVDD, RP, SPK\_GAIN\_MAX, and SPK\_GAIN\_MIN settings. The ballistics of the compressor (in both Mode 2 and Mode 3) are set by the parameters in Table 16 and 17.

| ADDRESS | BIT | NAME              | DESCRIPTION                                                                                                                                                                                                          |
|---------|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 7   |                   | <b>Speaker Gain Min (V<sub>P</sub>):</b><br>0000: 5.37 (9.5dB) 0111: 12.03 (16.5dB)                                                                                                                                  |
|         | 6   |                   | 0000: 5.37         (9.5dB)         0111: 12.03         (16.5dB)           0001: 6.03         (10.5dB)         1000: 13.5         (17.5dB)           0010: 6.77         (11.5dB)         1001: 15.15         (18.5dB) |
|         | 5   | SPK_GAIN_MIN[3:0] | 0011: 7.59         (12.5dB)         1010: 16.99         (19.5dB)           0100: 8.52         (13.5dB)         1011: 18.0         (20.0dB)                                                                           |
| 0.01    | 4   |                   | 0101: 9.56 (14.5dB) 1100–1111: Reserved<br>0110: 10.72 (15.5dB)                                                                                                                                                      |
| 0x31    | 3   |                   | DHT Rotation Point (dBFS)           0000: -0.5         1000: -10                                                                                                                                                     |
|         | 2   |                   | 0001: -1         1001: -12           0010: -2         1010: -15           0014: -2         1014: -10                                                                                                                 |
|         | 1   | DHT_VROT_PNT[3:0] | 0011: -3         1011: -18           0100: -4         1100: -20           0101: -5         1101: -22                                                                                                                 |
|         | 0   |                   | 0110: -6 1110: -25<br>0111: -8 1111: -30                                                                                                                                                                             |

## Table 15. Speaker Gain Minimum Voltage

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

**MODE 3a:** PVDD voltage is less than the rotation points maximum output voltage,  $V_{EXP\_RP}$ . When the rotation point is set to a high value (for example -6dBFS) this mode applies. If  $V_{PVDD}$  is less than  $V_{EXP\_RP}$ , then hard limiting is applied to peaks and the effective RP is now set by the need to fit peak signals into the available

PVDD range. The MAX98371 automatically determines a new RP based on the PVDD ADC. Normally, RP is set so that this mode is never used, and the  $V_{EXP\_RP}$  as set by the RP and SPK\_GAIN\_MAX combination should reflect the lowest PVDD value expected. In this Mode the



Figure 11. Example of Dynamic Headroom Tracking in Mode 3a Operation

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

SPK\_GAIN\_MIN parameter is set to be well below the  $V_{\mbox{EXP}\mbox{RP}}.$ 

**MODE 3b:** PVDD voltage is less than the speaker gain minimum output voltage. When the Rotation Point is set to a low value (for example -30dBFS) this mode applies. If  $V_{PVDD}$  is less than SPK\_GAIN\_MIN, the DHT cannot compress the signal any further. So the compression ratio stays fixed, and as PVDD decreases below SPK GAIN

MIN, the output signal starts to clip. This clipping can be eliminated if the limiter is enabled in addition to the DHT.

Figures 10 and 12 show an additional parameter, SPK\_ GAIN\_MIN, on the transfer function plots. This parameter is useful when a lower RP is selected. SPK\_GAIN\_MIN provides a means to create a maximum compression ratio. When the input signal reaches the maximum output voltage that PVDD can provide, the output signal starts to



Figure 12. Example of Dynamic Headroom Tracking in Mode 3b Operation

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

clip (Figure 12). This behavior may not be desirable, but the clipping can be eliminated by enabling the limiter. See Figure 13.

The transfer function shown in <u>Figure 13</u> is typically preferable to the transfer function shown in <u>Figure 12</u>. When DHT and the limiter are used together, it allows for creation of a second inflection point on the transfer



Figure 13. Example of Dynamic Headroom Tracking in Mode 3b with Limiter.

function. This second inflection point reduces the transition from compression to limiting and minimizes the audible impact of signal manipulation by the DHT.

### **DHT Ballistics**

When an input signal exceeds the rotation point, DHT will apply attenuation to the signal over some amount of time (this is configurable by via DHT\_ATK\_RATE register 0x32). The instant that the large signal is input to the MAX98371 the output will try to reproduce that signal without any attenuation from the DHT. Over time the DHT will apply compression to ensure that the signal can fit within the available PVDD voltage. If a large enough input signal is applied there can be hard clipping on the output for a short time (see Figure 14). However, after the full

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

attack time has completed there should be no clipping. Hard clipping can also be prevented by using the Limiter (see Limiter section).

If you observe the output waveform, you will notice that the amount of attenuation applied increases up to when Vin(dBFS) = PVDD (dBFS). Once Vin(dBFS) is greater than PVDD(dBFS) the amount of attenuation observed in the output waveform appears to decrease. This is a result of the output clipping against the PVDD voltage level. The DHT still takes the same amount of time to apply the compression as though it had the headroom to reproduce the signal.



Figure 14. Dynamic Headroom Tracking Attack functionality

The amount of compression applied by DHT depends on a few parameters: SPK\_GAIN\_MAX, PVDD, Input Signal Amplitude and the Rotation point.

To establish where PVDD is relative to Speaker gain max use the equation 1 below.

$$PVDD(dBFS) \quad 20log\left(\frac{PVDD(V)}{MPO}\right)$$

Where PVDD(V) is the voltage readback from the PVDD ADC, and VMPO is the maximum peak output voltage (V<sub>MPO</sub>) see <u>Table 14</u>. For example, if PVDD = 12V and V<sub>MPO</sub> = 12V then PVDD(dBFS) = 0dBFS. It should be noted that 0dBFS is the maximum value for PVDD(dBFS). If solving Eq 1 returns a value greater than 0 then 0dBFS should be used for further calculations. This is important as DHT only ever applies attenuation and never positive gain.

If PVDD = 8.4V and SPK\_GAIN\_MAX = 12V then solving Eq 1 gives -3.098dBFS. This is PVDD's level relative to SPK\_GAIN\_MAX in dB. To find the expected compressed output voltage use equation 2 below.

$$ATTENUATION(dB) = PVDD(dBFS) + Input(dBFS) \times \left(\frac{-PVDD(dBFS)}{V_{RP}(dBFS)}\right)$$

When PVDD(dBFS) = 0 we can see that the PVDD and the fraction term drop out which gives Attenuation equals zero. This makes sense because when PVDD(dBFS)= 0there is sufficient headroom to playback any signal input into the MAX98371 and no compression will be applied.

## Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

A non-trivial case might be If PVDD = 8.4V,  $V_{MPO}$  = 12V, Rotation Point = -10dBFS and the input signal level is -5dBFS. Next, we solve equation 2 with these values.

$$= PVDD(dBFS) + Input(dBFS) \times \left(\frac{-PVDD(dBFS)}{V_{RP}(dBFS)}\right)$$
$$= -3.098dBFS + -5dBFS \times \left(\frac{3.098dBFS}{-10dBFS}\right)$$
$$= -1.54dBFS$$

For this example the total amount of compression applied by DHT 1.54dB. DHT Attack Rate and DHT Attack Step can be configured to apply the 1.54dB of attenuation of over a programmable amount of time.

As a rule of thumb, attack times (product of attack rate, attack step, and number of steps) faster than 600µs are not achievable. This is independent of sample rate. Input data is rectified, filtered and converted to the log domain. The DSP compares the input data with filtered data from the PVDD ADC then compression is applied within the DSP. The compressed data must be converted back to linear scale and then output. The large number of complex computations required in the DSP requires a fixed 600µs to complete the compression algorithm. As a result, attack times faster than 600µs are not possible. (see Table 16)

Continuing the same example when the Input signal size decreases below the rotation point DHT will release the 1.54dB of attenuation it applied to the signal. The release time for DHT is configurable via Register 0x33. (see Table 17)

| ADDRESS | BIT | NAME                | DESCRIPTION                                                                      |
|---------|-----|---------------------|----------------------------------------------------------------------------------|
|         | 4   | - DHT_ATK_STEP[1:0] | DHT Attack Step Size<br>00: 0.25dB<br>01: 0.5 dB                                 |
|         | 3   |                     | 10: 1.0dB<br>11: 2.0dB (default)                                                 |
| 0x32    | 2   | DHT_ATK_RATE[2:0]   | DHT Compressor Attack Rate<br>All attack times in µs/step<br>000: 17.5 (default) |
|         | 1   |                     | 001: 35<br>010: 70<br>011: 140<br>100: 280                                       |
|         | 0   |                     | 101: 560<br>110: 1120<br>111: 2240                                               |

### Table 16. Dynamic Headroom Tracking Attack Settings

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### ADDRESS BIT NAME DESCRIPTION **DHT Release Step Size** 4 00: 0.25dB DHT\_REL\_STEP[1:0] 01: 0.5dB 10: 1.0dB 3 11: 2.0dB (default) **DHT Compressor Release Rate** 2 All release times in ms/step 0x33 000: 45 (default) 001: 225 010: 450 1 DHT\_REL\_RATE[2:0] 011: 1150 100: 2250 101: 3100 0 110: 4500 111: 6750

## Table 17. Dynamic Headroom Tracking Release Settings

## Table 18. Dynamic Gain Enables

| ADDRESS | BIT | NAME     | DESCRIPTION                                                                           |
|---------|-----|----------|---------------------------------------------------------------------------------------|
|         | 2   | PVADC_EN | 0: PVDD ADC is disabled.<br>1: PVDD ADC is enabled.                                   |
| 0x4B    | 1   | LMTR_EN  | 0: Limiter is disabled.<br>1: Limiter is enabled.                                     |
|         | 0   | DHT_EN   | 0: Dynamic headroom tracking is disabled.<br>1: Dynamic headroom tracking is enabled. |

## Table 19. Limiter Threshold Select

| ADDRESS | BIT | NAME             | DESCRIPTION                                                                              |
|---------|-----|------------------|------------------------------------------------------------------------------------------|
|         | 1   |                  | Limiter Threshold Select<br>00: User-programmable threshold (contents of register 0x59). |
| 0x58    | 0   | LMTR_TH_SEL[1:0] | 01: Threshold is set by SPK_GAIN_MAX.<br>10–11: Threshold is set by PVDD level.          |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Table 20. Manual Limiter Threshold Settings**

| ADDRESS | BIT | NAME          | DESCRIPTION                                       |  |
|---------|-----|---------------|---------------------------------------------------|--|
|         | 4   |               | Manual Limiter Threshold Setting (Input Referred) |  |
|         | 3   |               | 00000: 0dBFS<br>00001: -1dBFS                     |  |
|         |     | LMTR_THC[4:0] | 00010: -2dBFS                                     |  |
| 0x59    | 2   |               | 00011: -3dBFS                                     |  |
|         | 1   |               | <br>11101: -29dBFS                                |  |
|         |     |               | 111101: -30dBFS                                   |  |
|         | 0   |               | 11111: -31dBFS                                    |  |

### Limiter

The MAX98371 features a programmable limiter that is used to compress large near full-scale signals. The input signal level where the attenuation is applied varies based on how the Limiter Threshold Select register is set.

When LMTR\_TH\_SEL is set to 00, the limiter threshold is user configurable via register LMTR\_THC (see <u>Table 20</u>).

When LMTR\_TH\_SEL is set to 01, the threshold is determined by SPK\_GAIN\_MAX. <u>Table 21</u> provides the threshold values.

When LMTR\_TH\_SEL is set to 10 or 11, the part looks at the PVDD ADC and the SPK\_GAIN\_MAX setting and determines the maximum output swing that the part can deliver without clipping. Input signals that require more voltage than is available on PVDD are limited to prevent clipping. Filtering can be applied to the PVDD ADC readings used by the limiter with the PVDD\_FILT\_TO\_LMTR bit (Table 9).

The limiter attack and release rates are measured in absolute time and are independent of sample rate. The limiter has its own set of configurable ballistics (Table 22).

### **Thermal ADC**

The MAX98371 features a die temperature monitoring ADC. This 6-bit ADC with a 100kHz sample rate reports the die temperature from 100°C to 163°C. THRM\_MIN\_TEMP sets the temperature at which the thermal foldback circuit initially activates. The measurements from the thermal ADC can be filtered before they are used by the thermal foldback circuit, or the values can pass directly without being filtered. THRM\_FILT\_SEL controls the filter selection.

### **Table 21. Limiter Threshold**

| SPK_GAIN_MAX SETTING | LMTR_THRESHOLD (dB) |
|----------------------|---------------------|
| 0x0B                 | 0                   |
| 0x0A                 | -1                  |
| 0x09                 | -2                  |
| 0x08                 | -3                  |
|                      |                     |
| 0x01                 | -10                 |
| 0x00                 | -11                 |

### **Thermal Protection**

The MAX98371 continuously monitors die temperature to ensure that the temperature does not exceed the maximum of +150°C (typ). The device can warn the host if die temperature is approaching the limit and shuts down if the limit is exceeded. As the overtemperature limit varies from part to part, the thermal warning thresholds are defined as percentages of the overtemperature limit. Once the device shuts down, it resets all register values except those related to thermal warning and overtemperature interrupt handling. The interrupt registers are maintained to ensure that host is alerted of the overtemperature event. Other registers can become corrupted by the over-temperature event and are reset to prevent unwanted behavior. Once the die temperature drops below +140°C (typ), the device alerts the host through an interrupt, indicating that it is safe to reprogram the device and resume audio playback.

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 22. Limiter Attack and Release Settings

| ADDRESS | BIT | NAME               | DESCRIPTION                                                                           |
|---------|-----|--------------------|---------------------------------------------------------------------------------------|
|         | 5   | LMTR_REL_RATE[2:0] | Limiter Release Time<br>Total time required for limiter to fully release<br>000: 15ms |
|         | 4   |                    | 001: 40ms<br>010: 70ms<br>011: 160ms<br>100: 300ms                                    |
| 0x55    | 3   |                    | 101: 450ms<br>110: 600ms<br>111: 850ms                                                |
|         | 2   |                    | Limiter Attack Time<br>Total time required for limiter to fully attack                |
|         | 1   |                    | 000 - 100: 160µs<br>101: 320µs                                                        |
|         | 0   |                    | 110: 640μs<br>111: 1280μs                                                             |

### **Table 23. Thermal ADC Measurements**

| ADDRESS | BIT | NAME               | DESCRIPTION                                                                               |
|---------|-----|--------------------|-------------------------------------------------------------------------------------------|
|         | 5   |                    |                                                                                           |
|         | 4   |                    | 0: 100°C                                                                                  |
| 0x37    | 3   |                    | 1: 101°C                                                                                  |
| 0.37    | 2   | THRM_ADC_MEAS[7:0] | 62: 162°C                                                                                 |
|         | 1   |                    | 63: 163°C                                                                                 |
|         | 0   |                    |                                                                                           |
|         | 5   |                    | 0: 100°C                                                                                  |
|         | 4   |                    | 1: 101°C                                                                                  |
| 0       | 3   | THRM_MIN_TEMP[6:0] |                                                                                           |
| 0x38    | 2   |                    | 20: 120°C (default)                                                                       |
|         | 1   |                    | 39: 139°C                                                                                 |
|         | 0   |                    | 40-63: 140°C                                                                              |
|         |     |                    | 000: THRM ADC LPF filter on f <sub>C</sub> = 0.55kHz                                      |
|         | 2   |                    | 001: THRM ADC LPF filter on $f_C = 2.15 \text{kHz}$                                       |
|         |     |                    | 010: THRM ADC LPF filter on $f_C = 4.55$ kHz                                              |
| 0x39    | 1   | THRM_FILT_SEL[2:0] | 011: Bypass filter (default)<br>100: THRM ADC peak detect filter on $f_{\rm C}$ = 0.55kHz |
|         |     |                    | 101: THRM ADC peak detect filter on $f_{\rm C} = 2.15$ kHz                                |
|         | 0   |                    | 110: THRM ADC peak detect filter on $f_{\rm C}$ = 4.55kHz                                 |
|         |     |                    | 111: Bypass filter                                                                        |

### **Thermal Foldback**

To allow a smoother audio response to high temperature events the MAX97805B features a thermal foldback loop. As the die temperature rises above a threshold of set by THRM\_MIN\_TEMP register (+120°C by default), the audio path is subjected to increasing attenuation, up to a maximum of -12dB.See Table 23.

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

The thermal foldback feature can be turned on through the THRM\_FB\_EN bit, default is off (Table 25). The release rate of the attenuation and the slope of the effect can be set by the user (Table 24), the attack time is fixed at  $10\mu s/dB$ .

THRM\_HOLD controls how long the temperature must stay on one side of the hysteresis threshold. THRM\_REL controls the release rate of the attenuation applied by the thermal foldback circuit. THRM\_SLOPE controls the amount of attenuation per °C. See <u>Table 24</u>.

Regardless of whether the thermal foldback feature is enabled, the thermal warning bit in the interrupt registers assert and generate an interrupt through the Interrupt Mask register when the  $+125^{\circ}C$  (typ) temperature threshold is crossed.

### **DOUT Operation and Data format**

The MAX98371 features a bidirectional DOUT pin to provide feedback data to the applications processor and other MAX98371s. The data output from DOUT shares the status of amplifier DHT and thermal foldback adjustments. The data format used to frame the data carried on DOUT is the same as the data format of the input data on the DIN pin. The DOUT pin only drives out during the slot

### **Table 24. Thermal Foldback Settings**

# assigned to the amplifier by TX\_CH#\_EN bit. At all other times, the pin is an input (to allow other devices to drive the DOUT signal).



Figure 15. Thermal Foldback performance

| ADDRESS | BIT | NAME                                                 | DESCRIPTION                                                           |
|---------|-----|------------------------------------------------------|-----------------------------------------------------------------------|
|         | 7   |                                                      | Thermal Foldback Hold Settings           00: 0ms                      |
|         | 6   | THRM_HOLD[1:0]                                       | 01: 20ms<br>10: 40ms<br>11: 80ms (default)                            |
|         | 5   | 0                                                    | -                                                                     |
|         | 4   | 0                                                    | -                                                                     |
| 0x36    | 3   | 3<br>THRM_REL[1:0]<br>2<br>1<br>THRM_SLOPE[1:0]<br>0 | Thermal Foldback Release Times<br>00: 3ms/dB<br>01: 10ms/dB           |
|         | 2   |                                                      | 10: 100ms/dB<br>11: 300ms/dB                                          |
|         | 1   |                                                      | Thermal Foldback Slope Settings       00: 0.5dB/°C       01: 0.5dB/°C |
|         | 0   |                                                      | 01: 1.0dB/°C<br>10: 2.0dB/°C<br>11: Reserved                          |

### Table 25. Thermal Foldback Enable

| ADDRESS | BIT | NAME       | DESCRIPTION                                                                            |
|---------|-----|------------|----------------------------------------------------------------------------------------|
| 0x4C    | 0   | THRM_FB_EN | Thermal Foldback Enable<br>0: Thermal foldback disabled<br>1: Thermal foldback enabled |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

The data output on the DOUT pin is structured as shown in Figure 16.

Where DHT\_INFO[7:0] contains the DHT attenuation (in dB) and THERM\_INFO [5:0] contains the attenuation thermal foldback attenuation broadcast out to other amplifiers on the same bus. It is decoded as shown in Figure 16.

The THRM\_LINK\_EN and DHT\_LINK\_EN are intended to be used as the global enables of receive data function of the ICC. It should also be noted that for the ICC to function properly ICC\_OC\_ENA bit in register 0x5C must be set to 1 so that the overcurrent protection on DOUT is enabled.

### Table 26. DHT INFO

| VALUE | DECODE (dB)   |
|-------|---------------|
| 0     | -95.625       |
| 1     | -95.25        |
| 2     | -94.875       |
|       | 0.375 (steps) |
| 253   | -0.750        |
| 254   | -0.375        |
| 255   | 0             |

## Table 27. THERM INFO

| VALUE | DECODE (°C)                  |
|-------|------------------------------|
| 0     | No thermal adjustment needed |
| 1     | +1                           |
| 2     | +2                           |
|       | 1 (steps)                    |
| 61    | +61                          |
| 62    | +62                          |
| 63    | +63                          |

Note: XX are padding bits and zeros that make up the remaining bits in the rest of the frame.



Figure 16. DOUT data structure

## Table 28. Thermal and DHT Link Enables

| ADDRESS | BIT | NAME         | DESCRIPTION                                   |
|---------|-----|--------------|-----------------------------------------------|
| 0x4E    | 1   | THRM_LINK_EN | 0: Disable THRM link.<br>1: Enable THRM link. |
| 0x4E    | 0   | DHT_LINK_EN  | 0: Disable DHT link.<br>1: Enable DHT link.   |

### Interchip Communication

The MAX98371 features an interchip communication (ICC) bus that facilitates synchronized gain adjustments between groups of MAX98371 amplifiers.

### **Multiamplifier Grouping**

By setting registers 0x3A through register 0x3F, it is possible to group MAX98371 amplifiers so that any gain adjustments due to DHT and/or thermal foldback are synchronized.

Each amplifier is configured by a register setting to monitor DOUT during certain slots. The slots selected define to which group each amplifier belongs. Therefore, each amplifier in a group must have the same settings for RX enables. Each individual amplifier must also have only one TX\_CH# enable set as well as the corresponding RX\_CH# enable.

For example, if we have four amplifiers and we want two groups, then one configuration may be that amplifiers 1 and 3 would belong to one group and amplifiers 2 and 4 belong to another. We can assign amplifier 1 to broadcast on Slot 0 through the TX\_CH0\_EN bit enable and amplifier 3 to broadcast on Slot 2 through the TX\_CH2\_EN bit. We would then configure both amplifiers to enable RX

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

enable to listen to both slots 0 and 2, so both amplifiers would have RX\_DHT\_CH0\_EN and RX\_DHT\_CH2\_EN enabled. While this configuration groups the amplifier in the same DHT group, there is another set of grouping registers for thermal foldback. These registers can be configured identically or differently to accommodate the desired behavior. To configure the second group, set amplifier 2 to broadcast on slot 1 through TX\_CH1\_EN and set amplifier 4 to broadcast on slot 3 through TX\_CH3\_EN. Then configure both amplifiers to enable RX enable to listen to both slots 1 and 3, so both amps would have RX\_DHT\_ CH1\_EN and RX\_DHT\_CH3\_EN enabled.

By definition, the minimum size of a group is two amplifiers, so the maximum number of groups that is supported is eight. A group can contain as many as 16 amplifiers, but then only one group is supported.

It is a requirement of the host processor to ensure that the RX register bits are set to the same values across all amplifiers intended to be used in a group. Devices in the same DHT group must also be configured with the same DHT parameters (SPK\_GAIN\_MAX, RP, and Ballistics) to achieve a balanced response across the group. The same is true of the THERM group.

### Table 29. InterChip Communication Configuration

| ADDRESS | BIT | NAME              | DESCRIPTION                                                                                                                                                        |
|---------|-----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 6   | ICC_OC_ENA        | 0: Disable overcurrent protection on DOUT.<br>1: Enable overcurrent protection on DOUT.                                                                            |
|         | 5   | ICC_DOUTEN_EXTFF  | <ul><li>0: Disable faster drive enable of the DOUT.</li><li>1: Enable faster drive enable of the DOUT for the ICC with BCLK rate greater than 12.288MHz.</li></ul> |
|         | 4   | ICC_DOUT_EXTFF    | <ul><li>0: Disable faster drive of the DOUT.</li><li>1: Enable faster drive of the DOUT for the ICC with BCLK rate greater than 12.288MHz.</li></ul>               |
| 0x5C    | 3   |                   | DOUT Drive Strength Control<br>0000: 1 (default)<br>0001 and 0010: 7/8                                                                                             |
|         | 2   |                   | 0011 and 0100: 3/4<br>0101 and 0110: 5/8<br>0111 and 1000: 1/2                                                                                                     |
|         | 1   | ICC_PAD_CTRL[3:0] | 1001 and 1010: 3/8<br>1011 and 1100: 1/4                                                                                                                           |
|         | 0   |                   | 1101: 1/8<br>1110: 1/8 with Miller slew rate reduction (Improves EMI)<br>1111: off                                                                                 |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Double Data Drive**

If the shared DOUT trace has a high capacitance that needs to be driven at high speed then the double-data drive feature can be used. This gives a longer drive time for each device.

When the BCLK is less than or equal to 25MHz, DOUT can be clocked with standard clocking: data changes on the falling edge and is valid on the rising edge of each BCLK (Table 30).

When the BCLK is greater than 25MHz, DOUT should be clocked using a double-data drive method: data changes on the falling edge and is valid on the second rising edge.

In this way, the DOUT data transfer rate is effectively half of the BCLK speed. This is accomplished by setting DRIVE\_MODE = 1.

This has implications for the supported slot lengths. When double-data drive is enabled, only 32-bit slot lengths are permitted.

Additional MAX98371 devices correctly interpret the double-data drive format (if enabled). Any other attached hardware, such as an applications processor, which is expecting standard timing, needs to ensure that it omits away the information captured on the nonvalid rising edge each time and reconstruct the samples accordingly.

### Table 30. DOUT Double Data Drive Mode

| ADDRESS | BIT | NAME       | DESCRIPTION                                            |
|---------|-----|------------|--------------------------------------------------------|
| 0x40    | 3   | DRIVE_MODE | 0: Single data drive (default)<br>1: Double data drive |



Figure 17. Single Data Drive



Figure 18. Double Data Drive illustration

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 31. DOUT DHT Receive Channel Configuration

| ADDRESS | BIT | NAME          | DESCRIPTION                                                                                            |
|---------|-----|---------------|--------------------------------------------------------------------------------------------------------|
|         | 7   | RXDHT_CH7_EN  | 0: DHT receive channel 7 is disabled.<br>1: DHT receive channel 7 is enabled.                          |
|         | 6   | RXDHT_CH6_EN  | <ul><li>0: DHT receive channel 6 is disabled.</li><li>1: DHT receive channel 6 is enabled.</li></ul>   |
|         | 5   | RXDHT_CH5_EN  | <ul><li>0: DHT receive channel 5 is disabled.</li><li>1: DHT receive channel 5 is enabled.</li></ul>   |
| 0x3A    | 4   | RXDHT_CH4_EN  | <ul><li>0: DHT receive channel 4 is disabled.</li><li>1: DHT receive channel 4 is enabled.</li></ul>   |
| UXSA    | 3   | RXDHT_CH3_EN  | <ul><li>0: DHT receive channel 3 is disabled.</li><li>1: DHT receive channel 3 is enabled.</li></ul>   |
|         | 2   | RXDHT_CH2_EN  | 0: DHT receive channel 2 is disabled.<br>1: DHT receive channel 2 is enabled.                          |
|         | 1   | RXDHT_CH1_EN  | 0: DHT receive channel 1 is disabled.<br>1: DHT receive channel 1 is enabled.                          |
|         | 0   | RXDHT_CH0_EN  | 0: DHT receive channel 0 is disabled.<br>1: DHT receive channel 0 is enabled.                          |
|         | 7   | RXDHT_CH15_EN | 0: DHT receive channel 15 is disabled.<br>1: DHT receive channel 15 is enabled.                        |
|         | 6   | RXDHT_CH14_EN | 0: DHT receive channel 14 is disabled.<br>1: DHT receive channel 14 is enabled.                        |
|         | 5   | RXDHT_CH13_EN | 0: DHT receive channel 13 is disabled.<br>1: DHT receive channel 13 is enabled.                        |
| 0x3B    | 4   | RXDHT_CH12_EN | <ul><li>0: DHT receive channel 12 is disabled.</li><li>1: DHT receive channel 12 is enabled.</li></ul> |
| UX3D    | 3   | RXDHT_CH11_EN | 0: DHT receive channel 11 is disabled.<br>1: DHT receive channel 11 is enabled.                        |
|         | 2   | RXDHT_CH10_EN | 0: DHT receive channel 10 is disabled.<br>1: DHT receive channel 10 is enabled.                        |
|         | 1   | RXDHT_CH9_EN  | 0: DHT receive channel 9 is disabled.<br>1: DHT receive channel 9 is enabled.                          |
|         | 0   | RXDHT_CH8_EN  | 0: DHT receive channel 8 is disabled.<br>1: DHT receive channel 8 is enabled.                          |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

# Table 32. DOUT Thermal Foldback Receive Channel Configuration

| ADDRESS | BIT | NAME          | DESCRIPTION                                                                                                  |
|---------|-----|---------------|--------------------------------------------------------------------------------------------------------------|
|         | 7   | RXTHM_CH7_EN  | <ul><li>0: THRM FB receive channel 7 is disabled.</li><li>1: THRM FB receive channel 7 is enabled.</li></ul> |
|         | 6   | RXTHM_CH6_EN  | 0: THRM FB receive channel 6 is disabled.<br>1: THRM FB receive channel 6 is enabled.                        |
|         | 5   | RXTHM_CH5_EN  | <ul><li>0: THRM FB receive channel 5 is disabled.</li><li>1: THRM FB receive channel 5 is enabled.</li></ul> |
| 0x3C    | 4   | RXTHM_CH4_EN  | 0: THRM FB receive channel 4 is disabled.<br>1: THRM FB receive channel 4 is enabled.                        |
| 0,30    | 3   | RXTHM_CH3_EN  | 0: THRM FB receive channel 3 is disabled.<br>1: THRM FB receive channel 3 is enabled.                        |
|         | 2   | RXTHM_CH2_EN  | 0: THRM FB receive channel 2 is disabled.<br>1: THRM FB receive channel 2 is enabled.                        |
|         | 1   | RXTHM_CH1_EN  | 0: THRM FB receive channel 1 is disabled.<br>1: THRM FB receive channel 1 is enabled.                        |
|         | 0   | RXTHM_CH0_EN  | 0: THRM FB receive channel 0 is disabled.<br>1: THRM FB receive channel 0 is enabled.                        |
|         | 7   | RXTHM_CH15_EN | 0: THRM FB receive channel 15 is disabled.<br>1: THRM FB receive channel 15 is enabled.                      |
|         | 6   | RXTHM_CH14_EN | 0: THRM FB receive channel 14 is disabled.<br>1: THRM FB receive channel 14 is enabled.                      |
|         | 5   | RXTHM_CH13_EN | 0: THRM FB receive channel 13 is disabled.<br>1: THRM FB receive channel 13 is enabled.                      |
| 0x3D    | 4   | RXTHM_CH12_EN | 0: THRM FB receive channel 12 is disabled.<br>1: THRM FB receive channel 12 is enabled.                      |
| 0,30    | 3   | RXTHM_CH11_EN | 0: THRM FB receive channel 11 is disabled.<br>1: THRM FB receive channel 11 is enabled.                      |
|         | 2   | RXTHM_CH10_EN | 0: THRM FB receive channel 10 is disabled.<br>1: THRM FB receive channel 10 is enabled.                      |
|         | 1   | RXTHM_CH9_EN  | 0: THRM FB receive channel 9 is disabled.<br>1: THRM FB receive channel 9 is enabled.                        |
|         | 0   | RXTHM_CH8_EN  | 0: THRM FB receive channel 8 is disabled.<br>1: THRM FB receive channel 8 is enabled.                        |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 33. DOUT Thermal Foldback Receive Channel Configuration

| ADDRESS | BIT | NAME       | DESCRIPTION                                                               |
|---------|-----|------------|---------------------------------------------------------------------------|
|         | 7   | TX_CH7_EN  | 0: Transmit channel 7 is disabled.<br>1: Transmit channel 7 is enabled.   |
|         | 6   | TX_CH6_EN  | 0: Transmit channel 6 is disabled.<br>1: Transmit channel 6 is enabled.   |
|         | 5   | TX_CH5_EN  | 0: Transmit channel 5 is disabled.<br>1: Transmit channel 5 is enabled.   |
| 0x3E    | 4   | TX_CH4_EN  | 0: Transmit channel 4 is disabled.<br>1: Transmit channel 4 is enabled.   |
| UXSE    | 3   | TX_CH3_EN  | 0: Transmit channel 3 is disabled.<br>1: Transmit channel 3 is enabled.   |
|         | 2   | TX_CH2_EN  | 0: Transmit channel 2 is disabled.<br>1: Transmit channel 2 is enabled.   |
|         | 1   | TX_CH1_EN  | 0: Transmit channel 1 is disabled.<br>1: Transmit channel 1 is enabled.   |
|         | 0   | TX_CH0_EN  | 0: Transmit channel 0 is disabled.<br>1: Transmit channel 0 is enabled.   |
|         | 7   | TX_CH15_EN | 0: Transmit channel 15 is disabled.<br>1: Transmit channel 15 is enabled. |
|         | 6   | TX_CH14_EN | 0: Transmit channel 14 is disabled.<br>1: Transmit channel 14 is enabled. |
|         | 5   | TX_CH13_EN | 0: Transmit channel 13 is disabled.<br>1: Transmit channel 13 is enabled. |
| 0x3F    | 4   | TX_CH12_EN | 0: Transmit channel 12 is disabled.<br>1: Transmit channel 12 is enabled. |
| UX3F    | 3   | TX_CH11_EN | 0: Transmit channel 11 is disabled.<br>1: Transmit channel 11 is enabled. |
|         | 2   | TX_CH10_EN | 0: Transmit channel 10 is disabled.<br>1: Transmit channel 10 is enabled. |
|         | 1   | TX_CH9_EN  | 0: Transmit channel 9 is disabled.<br>1: Transmit channel 9 is enabled.   |
|         | 0   | TX_CH8_EN  | 0: Transmit channel 8 is disabled.<br>1: Transmit channel 8 is enabled.   |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## Table 34. Extra BCLK Cycle Configuration

| ADDRESS | BIT | NAME         | DESCRIPTION                                                                                                           |
|---------|-----|--------------|-----------------------------------------------------------------------------------------------------------------------|
| 0x41    | 1   | TX_EXTRA_HIZ | <ul><li>0: Extra BCLK cycles are driven to zero.</li><li>1: Extra BCLK cycles are driven to high impedance.</li></ul> |

## Table 35. Manual HIZ Mode Configuration

| ADDRESS | BIT | NAME        | DESCRIPTION                                                                                                         |
|---------|-----|-------------|---------------------------------------------------------------------------------------------------------------------|
|         | 7   | TX_CH7_HIZ  | <ul><li>0: Transmit Channel 7 outputs data/zeros.</li><li>1: Transmit Channel 7 outputs high impedance.</li></ul>   |
|         | 6   | TX_CH6_HIZ  | <ul><li>0: Transmit Channel 6 outputs data/zeros.</li><li>1: Transmit Channel 6 outputs high impedance.</li></ul>   |
|         | 5   | TX_CH5_HIZ  | <ul><li>0: Transmit Channel 5 outputs data/zeros.</li><li>1: Transmit Channel 5 outputs high impedance.</li></ul>   |
| 0x42    | 4   | TX_CH4_HIZ  | <ul><li>0: Transmit Channel 4 outputs data/zeros.</li><li>1: Transmit Channel 4 is enabled.</li></ul>               |
| 0,42    | 3   | TX_CH3_HIZ  | <ul><li>0: Transmit Channel 3 outputs data/zeros.</li><li>1: Transmit Channel 3 outputs high impedance.</li></ul>   |
|         | 2   | TX_CH2_HIZ  | <ul><li>0: Transmit Channel 2 outputs data/zeros.</li><li>1: Transmit Channel 2 outputs high impedance.</li></ul>   |
|         | 1   | TX_CH1_HIZ  | <ul><li>0: Transmit Channel 1 outputs data/zeros.</li><li>1: Transmit Channel 1 outputs high impedance.</li></ul>   |
|         | 0   | TX_CH0_HIZ  | <ul><li>0: Transmit Channel 0 outputs data/zeros.</li><li>1: Transmit Channel 0 outputs high impedance.</li></ul>   |
|         | 7   | TX_CH15_HIZ | <ul><li>0: Transmit Channel 15 outputs data/zeros.</li><li>1: Transmit Channel 15 outputs high impedance.</li></ul> |
|         | 6   | TX_CH14_HIZ | <ul><li>0: Transmit Channel 14 outputs data/zeros.</li><li>1: Transmit Channel 14 outputs high impedance.</li></ul> |
|         | 5   | TX_CH13_HIZ | <ul><li>0: Transmit Channel 13 outputs data/zeros.</li><li>1: Transmit Channel 13 outputs high impedance.</li></ul> |
| 0x43    | 4   | TX_CH12_HIZ | <ul><li>0: Transmit Channel 12 outputs data/zeros.</li><li>1: Transmit Channel 12 outputs high impedance.</li></ul> |
| 0,45    | 3   | TX_CH11_HIZ | <ul><li>0: Transmit Channel 11 outputs data/zeros.</li><li>1: Transmit Channel 11 outputs high impedance.</li></ul> |
|         | 2   | TX_CH10_HIZ | <ul><li>0: Transmit Channel 10 outputs data/zeros.</li><li>1: Transmit Channel 10 outputs high impedance.</li></ul> |
|         | 1   | TX_CH9_HIZ  | <ul><li>0: Transmit Channel 9 outputs data/zeros.</li><li>1: Transmit Channel 9 outputs high impedance.</li></ul>   |
|         | 0   | TX_CH8_HIZ  | <ul><li>0: Transmit Channel 8 outputs data/zeros.</li><li>1: Transmit Channel 8 outputs high impedance.</li></ul>   |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| ADDRESS | BIT | NAME          | DESCRIPTION                                                                                                                                       |
|---------|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 7   | SPK_SWCLK     | Class D output Switching Frequency Select<br>0: Speaker switching frequency is set to 472kHz.<br>1: Speaker switching frequency is set to 330kHz. |
|         | 6   | —             | _                                                                                                                                                 |
|         | 5   | —             | _                                                                                                                                                 |
|         | 4   | —             | —                                                                                                                                                 |
| 0x4A    | 3   |               | Programmable Speaker Edge Rate Control<br>00: Nominal edge rate                                                                                   |
|         | 2   | SPK_EDGE[1:0] | 01: +15% faster edge rate<br>10: -40% slower edge rate<br>11: -20% slower edge eate                                                               |
|         | 1   | —             | _                                                                                                                                                 |
|         | 0   | SPK_EN        | <b>Speaker amplifier Enable</b><br>0: Speaker amplifier is disabled (default).<br>1: Enable                                                       |

## Table 36. Speaker Configuration

### **Class D Output Stage**

The MAX98371 Class D output stage with Active Emissions Limiting (AEL) provides optimum suppression and control of output switching harmonics that most directly contribute to EMI and radiated emissions. Programmable speaker edge rate control is available to help tweak EMI performance. As the edge rate increases the efficiency goes up slightly, and as the edge rate slows the efficiency goes down. Set the speaker edge rate with bits SPK\_EDGE bits in register 0x4A.

The default Class D output switching frequency is 472kHz for the best THD performance. To trade off THD performance for higher efficiency the output switching frequency can be set to 330kHz by setting SPK\_SWCLK to 1.

To achieve the lower power consumption the output switching of the Class D amplifier the part can be disabled through the SPK\_EN bit. See <u>Table 36</u> for speaker configuration.

### **Ultra-Low EMI Filterless Output Stage**

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet electromagnetic-interference (EMI) regulation standards. The active emissions limiting edge-rate control circuitry reduce EMI emissions so that with 18in of speaker cable the MAX98371 passes the EN55022B standard without the need for external filtering components.

### V<sub>DVDD</sub> and V<sub>PVDD</sub> UVLO

The MAX98371 monitors both DVDD and PVDD for low voltage conditions that would prevent the speaker amplifier from operating normally. If the voltage on DVDD drops below the DVDD-UVLO threshold ( $V_{DVDD-UVLO}$ ), the device is placed in hardware shutdown. All the I<sup>2</sup>C internal registers reset to their default values. The device can be commanded to leave this state through the I<sup>2</sup>C command if the voltage on DVDD later exceeds the  $V_{DVDD-UVLO}$  threshold.

If the voltage PVDD drops below the PVDD-UVLO threshold, the audio output is muted to prevent the PVDD supply from being used by the amplifier. If the voltage on PVDD later exceeds the  $V_{PVDD-UVLO}$  threshold, the device can be commanded to unmute through the I<sup>2</sup>C command.

### **Click-and-Pop Suppression**

The MAX98371 speaker amplifier features Maxim's comprehensive click-and-pop suppression. During power-up and power-down, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device.

At startup, the PGA gain is automatically ramped from mute to the desired setting at a rate of  $200\mu s/dB$ . Similarly, the gain is ramped down to mute at shutdown at the same rate. For faster startup and shutdown, disable gain ramping.

During normal operation, any requested gain changes are ramped from the old value to the new value at a value determined by the ballistics within the volume control block.

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Amplifier Current Limit**

The MAX98371 features current limit protection that protects the device against shorts. If the output current of the speaker amplifier exceeds the current limit (6A typ) the IC disables the outputs for approximately 100µs. After 100ms, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and re-enable the outputs until the fault condition is removed. Set OVC\_SEL low to disable this behavior (see <u>Table 37</u>). The current limit protects against both high current and short-circuit events.

### **Thermal Shutdown Recovery**

When the temperate of the die exceeds +150°C, the part enters thermal shutdown. However, the MAX98371 features a configurable thermal shutdown autorecovery mode. When the die temperate has decreased by 30°C from the thermal shutdown event, the MAX98371 attempts to resume the previous operating state. Set TSHDN\_AUTO\_RESTART high to enable auto recovery mode. (See Table 37)

### **Output Sensing When Using Ferrites**

The MAX98371 features two remote sensing pins OUTN\_ SNS and OUTP\_SNS. Remotely sensing the voltage at the load provides a THD+N advantage over sensing at the DUT output when ferrite beads are used. (see Figure 20) The remote sense lines connect the output signal at the load to the inverting terminal of the internal error amplifier of the Class D. (see Figure 19) Ferrites are highly nonlinear so sensing at the load versus at the output pins ensures that any signal degradation caused by the filtering components is appropriately compensated.

However, in many applications, there may not be a need to filter the output with a Ferrite bead.

### **Clocking Architecture**

The MAX98371 includes a flexible clocking architecture and operation with no MCLK input.

A configurable internal clock monitor circuit monitors the internal clock source (BCLK) and automatically places the device in software shutdown if the clock source is removed. Set CMON\_ENA high to enable the clock monitor. This prevents unwanted signals from being applied to the speaker during a fault condition. When CMON\_AUOT\_RESTART is high the device will automatically return to normal operatrion when the clock source is subsequently reapplied. (See Table 37)



Figure 19. Typical Application Circuit with Ferrites Beads Used



Figure 20 .THD Performance Improvement Enabled by Remote Sensing

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### Reset

The MAX98371 features an active-low hardware reset. When the voltage-on reset is pulled low, the part enters global shutdown. To reenable the part the reset pin must be pulled high and a global enable I<sup>2</sup>C command must be issued.

### **Hardware Reset**

When the reset pin is pulled low, the device is in its lowest power-down state and communication over I<sup>2</sup>C is not possible. After exiting reset mode, all registers are set to their default POR values.

Also, if DVDD is removed while PVDD is still applied, the device goes into a hardware shutdown mode and communication through I<sup>2</sup>C is not possible.

# Table 37. Clock Monitor Configuration

### **Software Reset**

Write 1 to bit 0 of register 0x51 to trigger a software reset. Software reset is used to return most registers to their default (POR) states. Biquad equalizer coefficients are not reset.

The software reset register is a write only register. As a result, a read of this register always returns 0x00. Writing logic-high to RST triggers a software register reset, while writing a logic-low to RST has no effect.

Also if PVDD is removed while DVDD is still applied the device goes into software shutdown mode where all blocks are disabled except I<sup>2</sup>C control block.

| ADDRESS | BIT | NAME               | DESCRIPTION                                                                                                                                |
|---------|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4D    | 3   | CMON_AUTO_RESTART  | <ul><li>0: Device does not restart after a clock monitor event.</li><li>1: Device restarts automatically when BCLK is restarted.</li></ul> |
|         | 2   | CMON_ENA           | 0: Clock monitor is disabled (default).<br>1: Clock monitor is enabled.                                                                    |
|         | 1   | OVC_SEL            | <ul><li>0: Current limit recovery is in manual mode.</li><li>1: Current limit recovery is in auto recover mode.</li></ul>                  |
|         | 0   | TSDHN_AUTO_RESTART | <ul><li>0: Thermal-protection recovery is in manual mode.</li><li>1: Thermal-protection recovery is in auto recover mode.</li></ul>        |

## Table 38. Reset Register

| ADD | DRESS | BIT | NAME | DESCRIPTION                                                                                      |
|-----|-------|-----|------|--------------------------------------------------------------------------------------------------|
| 0   | x51   | 0   | RST  | Reset<br>0: No action is taken.<br>1: Reset. All registers return to their POR (default) values. |

## Table 39. Global Enable Register

| ADDRESS | BIT | NAME | DESCRIPTION                                 |
|---------|-----|------|---------------------------------------------|
| 0x50    | 0   | EN   | Global Enable:<br>0: Disabled<br>1: Enabled |

## I<sup>2</sup>C Serial Interface

The MAX98371 features an I<sup>2</sup>C 2-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA and SCL facilitate communication between the IC and the master at clock rates up to 400kHz. Figure 21 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the IC by transmitting the proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each word transmitted to the IC is 8 bits long and is followed by an acknowledge clock pulse. A master reading data from the IC transmits the proper slave address followed by a series of nine SCL pulses. The IC transmits data on SDA in sync with the mastergenerated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge, and a STOP (P) condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than  $500\Omega$ , is required on SDA. SCL operates only as an input. A pullup resistor, typically greater than 500 $\Omega$ , is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the IC from high voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### **Bit Transfer**

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals. See the *START and STOP Conditions* section.

### **START and STOP Conditions**

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 21). A START condition from the master signals the beginning of a transmission to the IC. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

### **Early Stop Conditions**

The IC recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

### **Slave Address**

The slave address is defined as the seven most significant bits (MSBs) followed by the read/write bit. For the IC the seven most significant bits are programmable through the ADDR1 and ADDR0 bumps. Setting the read/write bit to 1 configures the IC for read mode. Setting the read/ write bit to 0 configures the IC for write mode. The slave address is the first byte of information sent to the IC after the START condition.



Figure 21. START, STOP, and REPEATED START Conditions

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

### Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the IC uses to handshake receipt each byte of data when in write mode (Figure 22). The IC pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master reattempts communication. The master pulls down SDA during the 9th clock cycle to acknowledge receipt of data when the IC is in read mode.

An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the IC, followed by a STOP condition.

### Write Data Format

A write to the IC includes transmission of a START condition, the slave address with the R/W bit set to 0, one byte of data to configure the internal register address pointer, one or more bytes of data, and a STOP condition. Figure 23 illustrates the proper frame format for writing one byte of data to the IC. Figure 24 illustrates the frame format for writing n-bytes of data to the IC.



Figure 22. Acknowledge



Figure 23. Writing One Byte of Data to the MAX98371



Figure 24. n-Bytes of Data to the MAX98371

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

The slave address with the R/W bit set to 0 indicates that the master intends to write data to the IC. The IC acknowledges receipt of the address byte during the master-generated 9th SCL pulse.

The second byte transmitted from the master configures the IC's internal register address pointer. The pointer tells the IC where to write the next byte of data. An acknowledge pulse is sent by the IC upon receipt of the address pointer data.

The third byte sent to the IC contains the data that is written to the chosen register. An acknowledge pulse from the IC signals receipt of the data byte. The address pointer autoincrements to the next register address after each received data byte. This autoincrement feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition.

### **Read Data Format**

Send the slave address with the R/W bit set to 1 to initiate a read operation. The IC acknowledges receipt of its slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00. The first byte transmitted from the IC is the content of register 0x00. Transmitted data is valid on the rising edge of SCL. The address pointer autoincrements after each read data byte. This autoincrement feature allows all registers to be read sequentially within one continuous frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read is from register 0x00.

The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the IC's slave address with the R/W bit set to 0 followed by the register address. A REPEATED START condition is then sent followed by the slave address with the R/W bit set to 1. The IC then transmits the contents of the specified register. The address pointer autoincrements after transmitting the first byte.

The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 25 illustrates the frame format for reading one byte from the IC. Figure 26 illustrates the frame format for reading multiple bytes from the IC.



Figure 25. Reading One Byte of Data from the MAX98371



Figure 26. Reading n-Bytes of Data from the MAX98371

### I<sup>2</sup>C Slave Addresses

The MAX98371 is configured using the I<sup>2</sup>C control bus. The addresses effectively allow unique audio endpoint destinations in systems that use multiples of the device. The IC uses hardware select slave addresses determined by the configuration of ADDR0, ADDR1 as shown in <u>Table 40</u>. See the I<sup>2</sup>C Serial Interface section for a complete interface description.

### **Applications Information**

### Layout and Grounding

Proper layout and grounding are essential for optimum performance. Use at least 4 PCB layers, and add thermal vias to the ground/power plane close to the MAX98371 to ensure good thermal performance and high-end output power. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal. Ground the power signals and the analog signals of the IC separately at the system ground plane, to prevent switching interference from corrupting sensitive analog signals.

Place the recommended supply decoupling capacitors as close as possible to the IC. The PVDD to PGND connection

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

must be kept short and should have minimum trace length and loop area to ensure optimumal performance.

Use wide, low-resistance output, supply and ground traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decreases the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4 $\Omega$  load through a 100m $\Omega$  trace, 49mW is consumed in the trace. If power is delivered through a 10m $\Omega$  trace, only 5mW is consumed in the trace. Wide output, supply, and ground traces also improve the power dissipation of the device.

The MAX98371 is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on the top and bottom PCB planes.

It is generally advisable to follow the layout of the MAX98371 evaluation kit as closely as is practical in the application.

Thermal and performance measurements shown in this Datasheet were measured with a 6 layer board with 2 signal layers and 4 ground layers. As a result our EVKit performance is likely better than what can be achieved with a JEDEC standard Board.

| ADDR1                   | ADDR0                   | I <sup>2</sup> C WRITE ADDRESS SELECT |
|-------------------------|-------------------------|---------------------------------------|
| ADDR1 connected to DVDD | ADDR0 connected to DGND | 0x62                                  |
| ADDR1 connected to DGND | ADDR0 connected to DGND | 0x64                                  |
| ADDR1 connected to SDA  | ADDR0 connected to DGND | 0x66                                  |
| ADDR1 connected to SCL  | ADDR0 connected to DGND | 0x68                                  |
| ADDR1 connected to DVDD | ADDR0 connected to SDA  | 0x6A                                  |
| ADDR1 connected to DGND | ADDR0 connected to SDA  | 0x6C                                  |
| ADDR1 connected to SDA  | ADDR0 connected to SDA  | 0x6E                                  |
| ADDR1 connected to SCL  | ADDR0 connected to SDA  | 0x70                                  |
| ADDR1 connected to DVDD | ADDR0 connected to DVDD | 0x72                                  |
| ADDR1 connected to DGND | ADDR0 connected to DVDD | 0x74                                  |
| ADDR1 connected to SDA  | ADDR0 connected to DVDD | 0x76                                  |
| ADDR1 connected to SCL  | ADDR0 connected to DVDD | 0x78                                  |
| ADDR1 connected to DVDD | ADDR0 connected to SCL  | 0x7A                                  |
| ADDR1 connected to DGND | ADDR0 connected to SCL  | 0x7C                                  |
| ADDR1 connected to SDA  | ADDR0 connected to SCL  | 0x7E                                  |
| ADDR1 connected to SCL  | ADDR0 connected to SCL  | 0x80                                  |

## Table 40. ADDR I<sup>2</sup>C Address Select

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

| BUMP              | VALUE (µF) | SIZE | VOLTAGE RATING<br>(V) | DIELECTRIC |
|-------------------|------------|------|-----------------------|------------|
| PVDD              | 10         | 0603 | 50                    | X5R        |
| PVDD              | 10         | 0603 | 50                    | X5R        |
| PVDD              | 0.1        | 0402 | 25                    | X5R        |
| PVDD              | 0.1        | 0402 | 25                    | X5R        |
| PVDD              | 220        | —    | 35                    | Alum-Elec  |
| V <sub>REFC</sub> | 1          | 0201 | 6.3                   | X5R        |
| DVDD              | 1          | 0201 | 6.3                   | X5R        |
| ĪRQ               | 10         | 0201 | _                     | _          |

## **Table 41. Recommended External Components**

## **WLP Applications Information**

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note 1891: *Wafer-Level Packaging (WLP) and Its Applications*. See Figure 27 for the recommended PCB footprint of the MAX98371.



Figure 27. MAX98371+ WLP Ball Dimensions

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## **Typical Application Circuit**



## **Ordering Information**

| PART          | TEMP RANGE     | PIN-PACKAGE |
|---------------|----------------|-------------|
| MAX98371EWV+T | -40°C to +85°C | 30 WLP      |
| MAX98371EWV+  | -40°C to +85°C | 30 WLP      |

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

## **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE | PACKAGE  | OUTLINE        | LAND                                 |
|---------|----------|----------------|--------------------------------------|
| TYPE    | CODE     | NO.            | PATTERN NO.                          |
| 30-WLP  | W302E2+1 | <u>21-0016</u> | Refer to<br>Application<br>Note 1891 |

# Digital Input Class D Speaker Amplifier with Dynamic Headroom Tracking

## **Revision History**

| REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION     |   |
|--------------------|------------------|-----------------|---|
| 0                  | 2/15             | Initial release | — |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.