

Click here to ask an associate for production status of specific part numbers.

MAX32675

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

General Description

The MAX32675 is a highly integrated, mixed-signal, ultralow-power microcontroller for industrial applications and is especially suitable for 4-20mA loop-powered sensors and transmitters. It is based on an ultra-low-power Arm® Cortex®- M4 with Floating Point Unit (FPU) and includes 384KB of flash and 160KB of SRAM. Error correction coding (ECC), capable of single error correction, double error detection (SEC-DED), is implemented over the entire flash, SRAM, and cache to ensure ultra-reliable code execution for demanding applications. An analog front-end (AFE) provides two 12-channel delta-sigma (Δ - Σ) ADCs with features and specifications optimized for precision sensor measurement. Each Δ - Σ ADC can digitize external analog signals as well as system temperature. A PGA with gains of 1x to 128x precedes each ADC. ADC outputs can be optionally converted on the fly from integer to singleprecision floating-point format. A 12-bit DAC is also included. The device also provides robust security features such as an AES Engine, TRNG, and secure boot.

Applications

- 4-20mA Industrial Sensors and Transmitters
- Industrial Pressure, Temperature, Flow, and Level Sensors/Transmitters
- Medical Pressure, Temperature, and Flow Sensors

Benefits and Features

- Low-Power, High-Performance for Industrial Applications
 - 100MHz Arm Cortex-M4 with FPU
 - 384KB Internal Flash
 - 160KB SRAM
 - 128kB ECC Enabled
 - 44.1µA/MHz ACTIVE Mode at 0.9V up to 12MHz Coremark $^{I\!\!R}$
 - 64.5µA/MHz ACTIVE Mode at 1.1V up to 100MHz Coremark
 - 2.84µA Full Memory Retention Current in BACKUP Mode at V_{DDIO} = 3.3V
 - Ultra-Low-Power Analog Peripherals
 - Smart Integration Reduces BOM, Cost, and PCB Size
 - Two Δ-Σ ADCs
 - 12 Channels, Assignable to Either ADC
 - Flexible Resolution and Sample Rates
 - 24 Bits at 0.4ksps 16 Bits at 4ksps
 - 12-Bit DAC
 - On-Die Temperature Sensor
 - Digital Peripherals
 - SPI (M/S)
 - Up to Two I²C
 - Up to Two UARTs
 - Up to 23 GPIOs
 - Timers
 - Up to Five 32-Bit Timers
 - Two Windowed Watchdog Timers
 - 8-Channel Standard DMA Controller
 - One I²S Slave for Digital Audio Interface
- Robust Security and Reliability
 - TRNG Compliant to SP800-90B
 - Secure Nonvolatile Key Storage and AES-128/192/ 256
 - Secure Bootloader to Protect IP/Firmware
 - Wide, -40°C to +105°C Operating Temperature Range

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. CoreMark is a registered trademark of EEMBC. Motorola is a trademark of Motorola Trademark Holdings, LLC.

Ordering Information appears at end of data sheet.

19-101222; Rev 1; 1/22

© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Simplified Block Diagram

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

TABLE OF CONTENTS

General Description	. 1
Applications	. 1
Benefits and Features	. 1
Simplified Block Diagram	. 2
Absolute Maximum Ratings	. 7
Package Information	. 7
68 TQFN	. 7
Electrical Characteristics	. 7
Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA	17
Electrical Characteristics—12-Bit DAC	26
Electrical Characteristics—Internal Voltage Reference	
Electrical Characteristics—SPI	
Electrical Characteristics—I ² C	29
Electrical Characteristics—I ² S	
Pin Configuration	34
68 TQFN	34
Pin Description	34
Functional Diagrams	
Power Supply Operational Modes	41
Detailed Description	42
Arm Cortex-M4 Processor with FPU Engine	42
Memory	42
Internal Flash Memory	42
Internal SRAM	42
Clocking Scheme	42
General-Purpose I/O and Special Function Pins	43
Power Management	44
Power Management Unit (PMU)	44
ACTIVE Mode	44
SLEEP Mode	44
DEEPSLEEP Mode	44
BACKUP Mode	44
STORAGE Mode	45
Standard DMA Controller	45
Windowed Watchdog Timer (WDT)	45
32-Bit Timer/Counter/PWM (TMR, LPTMR)	46
Serial Peripherals	46
I ² C Interface (I2C)	
Serial Peripheral Interface (SPI)	47

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

TABLE OF CONTENTS (CONTINUED)

I ² S Interface (I2S)	47
UART	47
16-/24-Bit Δ - Σ Analog-to-Digital Converter with Programmable Gain Amplifier	48
12-Bit Digital-to-Analog Converter	49
Security	49
AES	49
True Random Number Generator (TRNG)	49
CRC Module	49
Bootloader	49
Secure Boot.	50
Debug and Development Interface (SWD)	50
Applications Information	51
Bypass Capacitors	51
Bootloader Activation	51
Ordering Information	51
Revision History	52

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

LIST OF FIGURES

Figure 1. SPI Master Mode Timing Diagram	. 31
Figure 2. SPI Slave Mode Timing Diagram	. 32
Figure 3. I ² C Timing Diagram	. 32
Figure 4. I ² S Timing Diagram	. 33
Figure 5. Power Supply Operation Modes	. 41
Figure 6. Clocking Scheme Diagram.	. 43

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

LIST OF TABLES

Table 1. BACKUP Mode RAM Retention	. 45
Table 2. Timer Configuration Options	. 46
Table 3. I ² C Configuration Options	. 47
Table 4. SPI Configuration Options	. 47
Table 5. UART Configuration Options	. 48
Table 6. Bootloader Activation Summary	. 51

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Absolute Maximum Ratings

(All voltages with respect to V _{SS} , unless otherwise noted.)
V _{CORE} 0.3V to +1.21V
V _{DD18} 0.3V to +1.98V
AIN[0-11]0.3V to V _{DDA} + 0.3V
V _{DDIO} , V _{DDA} 0.3V to +3.63V
HFXIN, HFXOUT0.3V to V _{DDIO} + 0.3V
RSTN, GPIO, ADC0_RDY, ADC1_RDY0.3V to V _{DDIO} + 0.3V
REF1P, REF1N, REF0P, REF0N, VREG1, CAP1N, CAP1P,
CAPON, CAPOP, DAC12_OUT0.3V to V _{DDA} + 0.3V
Total Current into All GPIO Combined (sink) 100mA

V _{SS} , V _{SSA}	.100mA
Output Current (sink) by Any GPIO Pin	
Output Current (source) by Any GPIO Pin	25mA
Continuous Package Power Dissipation 68 TQFN (m	
board) $T_A = +70^{\circ}C$ (derate 45.21 mW/°C	above
+70°C)	64mW
Operating Temperature Range40°C to	+105°C
Storage Temperature Range65°C to	+150°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

68 TQFN

Package Code	T6888MK+2
Outline Number	<u>21-0510</u>
Land Pattern Number	<u>90-0354</u>
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ_{JA})	22.12°C/W
Junction to Case (θ_{JC})	0.7°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
POWER / BOTH SINGLE-SUPPLY AND MULTISUPPLY OPERATION									
Supply Voltage, Digital	V _{DDIO}	The V_{DDIO} device pin must be connected to the V_{DDA} device pin.	2.7	3.3	3.63	v			
	V _{DD18}		1.71	1.8	1.98				
		OVR = [00] 0.855 0.9 0.945							
Supply Voltage, Core	V _{CORE}	OVR = [01]	0.95	1.0	1.05	v			
		Default OVR = [10]	1.045	1.1	1.155				
Supply Voltage, Analog	V _{DDA}	The V_{DDIO} device pin must be connected to the V_{DDA} device pin.	2.7 3.3 3.6		3.63	V			
Dowor Fail Depat		Monitors V _{DDIO}	1.55		2.4				
Power-Fail Reset V _{RST}		Monitors V _{CORE} during multisupply operation	0.76		0.86				
Power-On-Reset (POR) Voltage		Monitors V _{DDIO}		1.4					
	V _{POR}	Monitors V _{CORE} during multisupply operation		0.6		V			

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNITS	
POWER / SINGLE-SUPP		(V _{DDIO} ONLY)					
		Dynamic, IPO enabled, total current into V _{DDIO}	OVR = [10], internal regulator set to 1.1V, f _{SYS_CLK(MAX)} = 100MHz		64.5		
		pin, V _{DDIO} = 3.3V, CPU in ACTIVE mode, executing Coremark, ECC disabled, inputs	OVR = [01], internal regulator set to 1.0V, fSYS_CLK(MAX) = 50MHz		62.5		
V _{DDIO} Current ACTIVE Mode	ent ACTIVE	V _{DDIO} , outputs	OVR = [00], internal regulator set to 0.9V, f _{SYS_CLK(MAX)} = 12MHz		59.5		μΑ/ΜΗz
		enabled, total	OVR = [10], internal regulator set to 1.1V, f _{SYS_CLK(MAX)} = 100MHz		49.4		
		pin, V _{DDIO} = 3.3V, CPU in ACTIVE mode, executing While(1), ECC	OVR = [01], internal regulator set to 1.0V, fsys_cLk(MAX) = 50MHz		47		
		V _{DDIO} , outputs	OVR = [00], internal regulator set to 0.9V, f _{SYS_CLK(MAX)} = 12MHz		44.1		
		OVR = [10], internal regulator set to 1.1V		796			
		CPU in ACTIVE	OVR = [01], internal regulator set to 1.0V		647		μA
		disabled, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [00], internal regulator set to 0.9V		475		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
		Dynamic, IPO enabled, total	OVR = [10], internal regulator set to 1.1V		39.2		
		current into V _{DDIO} pin, V _{DDIO} = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two	OVR = [01], internal regulator set to 1.0V, f _{SYS} CLK(MAX) = 50MHz		37.5		
		channels active, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [00], internal regulator set to 0.9V, f _{SYS} CLK(MAX) = 12MHz		36.1		-
V _{DDIO} Current SLEEP Mode	enab curre pin, V CPU mode disab disab tied tu VDDI	Dynamic, IPO enabled, total current into V _{DDIO}	OVR = [10], internal regulator set to 1.1V, fsys_CLK(MAX) = 100MHz		21.1	μΑ/	µA/MHz
		pin, V _{DDIO} = 3.3V, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA Fixed, IPO enabled, total current into V _{DDIO} pin, V _{DDIO} = 3.3V, CPU in SLEEP mode, ECC	OVR = [01], internal regulator set to 1.0V, fsys_cLk(MAX) = 50MHz		19		
			OVR = [00], internal regulator set to 0.9V, fsys_cLk(MAX) = 12MHz		17.2		
			OVR = [10], internal regulator set to 1.1V		796		Α
	IDD_FSLPS		OVR = [01], internal regulator set to 1.0V		647		
	disabled, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [00], internal regulator set to 0.9V		475			
V _{DDIO} Fixed Current, DEEPSLEEP Mode	IDD_FDSLS	Standby state with full data retention and 160KB SRAM retained	V _{DDIO} = 3.3V		4.0		μΑ
V _{DDIO} Fixed Current, BACKUP Mode	IDD_FBKUS	V _{DDIO} = 3.3V	0KB SRAM retained, retention regulator disabled		0.32		μΑ

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS							
V _{DDIO} Fixed Current, BACKUP Mode										20KB SRAM retained		1.04		
	l== =====	V _{DDIO} = 3.3V	40KB SRAM retained		1.37									
	'DD_FBKUS		80KB SRAM retained		1.90		μΑ							
	160KB SRA retained	160KB SRAM retained		2.84										
V _{DDIO} Fixed Current, STORAGE Mode	IDD_FSTOS	V _{DDIO} = 3.3V		0.362		μA								
SLEEP Mode Resume Time	tSLP_ONS				2.1		μs							
DEEPSLEEP Mode	t	fast_wk_en = 1			89									
Resume Time	tDSL_ONS	fast_wk_en = 0			129		us							
BACKUP Mode Resume Time	^t BKU_ONS	Includes system in execution time		1.25		ms								
STORAGE Mode Resume Time	tsto_ons	Includes system in execution time	tialization and ROM		1.5		ms							

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNITS	
POWER / MULTISUPPL	Y OPERATION		L				
		Dynamic, IPO enabled, total current into V _{CORE} pin, CPU in ACTIVE mode, executing Coremark, ECC	OVR = [10], V _{CORE} = 1.1V, f _{SYS_CLK(MAX)} = 100MHz		63.7		
			OVR = [01], V _{CORE} = 1.0V, f _{SYS} CLK(MAX) = 50MHz		61.9		
V _{CORE} Current, ACTIVE Mode		disabled, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [00], V _{CORE} = 0.9V, f _{SYS_CLK(MAX)} = 12MHz		59.4		_ μA/MHz
		Dynamic, IPO enabled, total current into VCORE pin, CPU in ACTIVE mode, executing While(1), ECC disabled, inputs tied to VSS or VDDIO, outputs source/sink 0mA= 1 fSY OV OV = 0 fSY	OVR = [10], V _{CORE} = 1.1V, f _{SYS} CLK(MAX) = 100MHz		48.9		
			OVR = [01], V _{CORE} = 1.0V, f _{SYS} CLK(MAX) = 50MHz		46.6		
			OVR = [00], V _{CORE} = 0.9V, f _{SYS} CLK(MAX) = 12MHz		44.5		
	er	Fixed, IPO enabled, total	OVR = [10], V _{CORE} = 1.1V		362		
		current into V _{CORE} pin, CPU in	OVR = [01], V _{CORE} = 1.0V		217		
	ICORE_FACTD	ACTIVE mode, 0MHz execution, ECC disabled, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [00], V _{CORE} = 0.9V		109		Αμ

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		Dynamic, IPO enabled, total current into V _{DDIO}	OVR = [10], f _{SYS_CLK(MAX)} = 100MHz		0.51		
		pin, V _{DDIO} = 3.3V, CPU in ACTIVE mode, executing Coremark, ECC	OVR = [01], f _{SYS} CLK(MAX) = 50MHz		0.51		
		disabled, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [00], fsys_clk(max) = 12MHz		0.51		
	IDD_DACTD	Dynamic, IPO enabled, total current into V _{DDIO}	OVR = [10], f _{SYS_CLK(MAX)} = 100MHz		0.51		- μA/MHz
		pin, V _{DDIO} = 3.3V, CPU in ACTIVE mode, executing While(1), ECC	OVR = [01], f _{SYS_CLK(MAX)} = 50MHz		0.51		-
V _{DDIO} Current, ACTIVE		disabled, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [00], f <u>sys_clk(MAX)</u> = 12MHz		0.51		
Mode	IDD_FACTD n e d ti	Fixed, IPO enabled, total current into V_{DDIO} pin, V_{DDIO} = 3.3V, CPU in ACTIVE mode, 0MHz execution, ECC disabled, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [10], V _{CORE} = 1.1V		367		
			OVR = [01], V _{CORE} = 1.0V		367		
			OVR = [00], V _{CORE} = 0.9V		307		μA
	ICORE_DSLPD	Dynamic, IPO enabled, total current into V _{CORE} pin, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [10], V _{CORE} = 1.1V, f <u>sys_clk(MAX)</u> = 100MHz		39.2		µA/MHz

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
	ICORE_DSLPD	Dynamic, IPO enabled, total current into V _{CORE} pin, CPU in SLEEP	OVR = [01], V _{CORE} = 1.0V, ^f SYS CLK(MAX) = 50MHz		37.5		
		mode, ECC disabled, standard DMA with two channels active, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [00], V _{CORE} = 0.9V, f _{SYS} CLK(MAX) = 12MHz		37		
		Dynamic, IPO enabled, total current into V _{CORE} pin, CPU in SLEEP mode, ECC disabled, DMA disabled, inputs tied to V _{SS} or V _{DDIO} , outputs source/sink 0mA	OVR = [10], V _{CORE} = 1.1V, f _{SYS_CLK(MAX)} = 100MHz		21.1		µA/MHz
V _{CORE} Current, SLEEP Mode			OVR = [01], V _{CORE} = 1.0V, f _{SYS} _{CLK(MAX)} = 50MHz		19.2		
			OVR = [00], V _{CORE} = 0.9V, SYS_CLK(MAX) = 12MHz		17.9		
		Fixed, IPO enabled, total	OVR [10], V _{CORE} = 1.1V		362		
	ICORE_FSLPD	current into V _{CORE} pin, CPU in SLEEP mode, ECC	OVR [01], V _{CORE} = 1.0V		217		- μΑ
		disabled, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR [00], V _{CORE} = 0.9V		109	h	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
V _{DDIO} Current, SLEEP Mode		Dynamic, IPO enabled, total current into V_{DD} pin, $V_{DDIO} = 3.3V$, CPU in SLEEP mode, ECC disabled, standard DMA with two channels active, inputs tied to V_{SS} or V_{DDIO} , outputs source/sink 0mA	OVR = [10], V _{CORE} = 1.1V, f <u>SYS_CLK(MAX)</u> = 100MHz		0.001		
		 Dynamic, IPO enabled, total current into V_{DDIO} fs pin, V_{DDIO} = 3.3V, CPU in SLEEP mode, ECC disabled, standard DMA with two V₀ channels active, fs 	OVR = [01], V _{CORE} = 1.0V, f _{SYS_CLK(MAX)} = 50MHz		0.001		- μA/MHz
			OVR = [00], V _{CORE} = 0.9V, f _{SYS} CLK(MAX) = 12MHz		0.001		
		Fixed, IPO enabled, total	OVR = [10], V _{CORE} = 1.1V		367		
		current into V _{DDIO} pin, V _{DDIO} = 3.3V, CPU in SLEEP	OVR = [01], V _{CORE} = 1.0V		367		
	^{IDD_FSLPD} mode, ECC disabled, inputs tied to V _{SS} or V _{DDIO} , outputs	mode, ECC disabled, inputs tied to V _{SS} or	OVR = [00], V _{CORE} = 0.9V		307		μΑ
V _{CORE} Fixed Current,	ICORE_FDSLP	V _{DDIO} = 3.3V, V _{COF}	RE = 1.1V		10		- μΑ
DEEPSLEEP Mode	D	V_{DDIO} = 3.3V, V_{COF}			3.8		
V _{DD} Fixed Current,	IDD_FDSLPD	V _{DDIO} = 3.3V, V _{COF}			0.34		- μA
DEEPSLEEP Mode	.00_000	V _{DDIO} = 3.3V, V _{COF}	_{RE} = 0.855V		0.34		P., .

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
		0KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.225		
		retained, retention regulator disabled	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.13		-
		20KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		1.256		-
		retained	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.507		-
V _{CORE} Fixed Current,		40KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		2.243		
BACKUP Mode	CORE_FBKUD	retained	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.877		μA
		80KB SRAM retained	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		3.97		
			V _{DDIO} = 3.3V, V _{CORE} = 0.855V		1.49		
		160KB SRAM retained	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		7.22		-
			V _{DDIO} = 3.3V, V _{CORE} = 0.855V		2.61		
		0KB SRAM retained, retention	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.34		
		regulator disabled	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.34		
		20KB SRAM retained	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.32		
			V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.32		
V _{DDIO} Fixed Current,	1	40KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.32		
BACKUP Mode	IDD_FBKUD	retained	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.108		μA
		80KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.32		
		retained	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.32		
		160KB SRAM	V _{DDIO} = 3.3V, V _{CORE} = 1.1V		0.32		
		retained	V _{DDIO} = 3.3V, V _{CORE} = 0.855V		0.32		1
V _{CORE} Fixed Current,		V _{DDIO} = 3.3V, V _{COF}	RE = 1.1V		0.226		
STORAGE Mode	ICORE_FSTOD	V _{DDIO} = 3.3V, V _{COF}	_{RE} = 0.855V		0.112		- μΑ
V _{DDIO} Fixed Current,		V _{DDIO} = 3.3V; V _{COF}			0.335		- μΑ
STORAGE Mode	IDD_FSTOD	V _{DDIO} = 3.3V; V _{COF}	_{RE} = 0.855V		0.335		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SLEEP Mode Resume Time	tSLP_OND			2.1		μs
DEEPSLEEP Mode	4	fast_wk_en = 1		81		
Resume Time	^t DSL_OND	fast_wk_en = 0		129		μs
BACKUP Mode Resume Time	^t BKU_OND	Includes system initialization and ROM execution time		1.25		ms
STORAGE Mode Resume Time	tSTO_OND	Includes system initialization and ROM execution time		1.5		ms
GENERAL-PURPOSE I/O)					
Input Low Voltage for All GPIO, RSTN	V _{IL_GPIO}	Pin configured as GPIO			0.3 × V _{DDIO}	V
Input High Voltage for All GPIO, RSTN	VIH_GPIO	Pin configured as GPIO	0.7 × V _{DDIO}			V
Output Low Voltage for		V _{DDIO} = 2.7V, I _{OL} = 1mA, DS[1:0] = 00		0.2	0.4	
All GPIO Except P0.6,		V _{DDIO} = 2.7V, I _{OL} = 2mA, DS[1:0] = 10		0.2	0.4	V
P0.7, P0.13, P0.18,	V _{OL_GPIO}	V _{DDIO} = 2.7V, I _{OL} = 4mA, DS[1:0] = 01		0.2	0.4	v
P0.19		V _{DDIO} = 2.7V, I _{OL} = 6mA, DS[1:0] = 11		0.2	0.4	
Output Low Voltage for		V _{DDIO} = 2.7V, I _{OL} = 2mA, DS = 0		0.2	0.4	
GPIO P0.6, P0.7, P0.13, V _{OL} P0.18, P0.19	V _{OL_I2C}	V _{DDIO} = 2.7V, I _{OL} = 10mA, DS = 1		0.2	0.4	V
		V _{DDIO} = 2.7V, I _{OH} = -1mA, DS[1:0] = 00	V _{DDIO} - 0.4			- - V
Output High Voltage for All GPIO Except P0.6,	V _{OH_GPIO}	V _{DDIO} = 2.7V, I _{OH} = -2mA, DS[1:0] = 10	V _{DDIO} - 0.4			
P0.7, P0.13, P0.18, P0.19		V _{DDIO} = 2.7V, I _{OH} = -4mA, DS[1:0] = 01	V _{DDIO} - 0.4			
		V _{DDIO} = 2.7V, I _{OH} = -6mA, DS[1:0] = 11	V _{DDIO} - 0.4			
Output High Voltage for GPIO P0.6, P0.7, P0.13,	Version	V _{DDIO} = 2.7V, I _{OH} = -2mA, DS = 0	V _{DDIO} - 0.4			v
P0.18, and P0.19	V _{OH_I2C}	V _{DDIO} = 2.7V, I _{OH} = -10mA, DS = 1	V _{DDIO} - 0.4			
Combined I _{OL} , All GPIO	IOL_TOTAL				100	mA
Combined I _{OH} , All GPIO	IOH_TOTAL		-100			mA
Input Hysteresis (Schmitt)	V _{IHYS}			300		mV
Input/Output Pin Capacitance for All Pins	C _{IO}			4		pF
Input Leakage Current Low	١ _{١L}	V _{IN} = 0V, internal pullup disabled	-500		+500	nA
Input Leakage Current High	Ιн	V _{IN} = 3.6V, internal pulldown disabled	-500		+500	nA

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics (continued)

(Limits are 100% tested at $T_A = +25^{\circ}$ C and $T_A = +105^{\circ}$ C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Pullup Resistor to	D	Pullup to $V_{DDIO} = V_{RST}$, RSTN at V_{IH}		18.7		- kΩ
RSTN	R _{PU_VDD}	Pullup to V_{DDIO} = 3.63V, RSTN at V_{IH}		10.0		- K12
Input Pullup Resistor for	D-	Device pin configured as GPIO, pullup to $V_{DDIO} = V_{RST}$, device pin at V_{IH}		18.7		- kΩ
All GPIO	R _{PU}	Device pin configured as GPIO, pullup to V_{DDIO} = 3.63V, device pin at V_{IH}		10.0		- K22
Input Pulldown Resistor	P	Device pin configured as GPIO, pulldown to V_{SS} , V_{DDIO} = V_{RST} , device pin at V_{IL}		17.6		- kΩ
for All GPIO	R _{PD}	Device pin configured as GPIO, pulldown to V_{SS} , V_{DDIO} = 3.63V, device pin at V_{IL}		8.8		K12
CLOCKS						
System Clock Frequency	^f sys_clk				100	MHz
System Clock Period	^t sys_clk			1/f _{SYS_C} LK		μs
Internal Primary Oscillator (IPO)	f _{IPO}	Default OVR = [10]		100		MHz
External RF Oscillator (ERFO)	ferfo	Required crystal characteristics: C _L = $12pF$, ESR $\leq 50\Omega$, C ₀ $\leq 7pF$, temperature stability ±20ppm, initial tolerance ±20ppm	16		32	MHz
Internal Baud Rate Oscillator (IBRO)	fibro			7.3728		MHz
Internal NanoRing Oscillator (INRO)	finro	Measured at V _{DDIO} = 2.7V		70		kHz
External Clock	fext_clk	External clock selected (P0.10)			25	MHz
FLASH MEMORY						·
Flash Erase Time	^t M_ERASE	Mass erase		30		
	^t P_ERASE	Page erase		30		– ms
Flash Programming Time Per Word	^t PROG	32-bit programming mode, f _{FLC_CLK} = 1MHz		42		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +125°C	10			years

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG INPUTS						
Full-Scale Input Voltage	FS			±V _{REF} / Gain		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Absolute Input Voltage		Buffers disabled	V _{SSA} - 30mV		V _{DDA} + 30mV	V
Input Voltaga Danga		Unipolar	0		V _{REF}	V
Input Voltage Range		Bipolar	-V _{REF}		V _{REF}	v
		AIN buffers/PGA disabled	V _{SSA}		V _{DDA}	
		Buffers enabled	V _{SSA} + 0.1		V _{DDA} - 0.1	
Common-Mode Voltage Range	V _{CM}	PGA gain = 1 to 16	V _{SSA} + 0.1 + (V _{IN})(Ga in)/2		V _{DDA} - 0.1 - (V _{IN})(Ga in)/2	V
		PGA gain = 32 to 128	V _{SSA} + 0.2 + (V _{IN})(Ga in)/2		V _{DDA} - 0.2 - (V _{IN})(Ga in)/2	
		Buffer disabled		±1		μA/V
Differential Input Current		Buffer enabled		0 to 50		~^
		PGA enabled		±1		nA
		Buffer disabled		±1		μA/V
Absolute Input Current		Buffer enabled		20 to 80		- 4
		PGA enabled, -40°C to +105°C	-2		2	nA
Input Capacitance		Bypass mode		10		pF
SYSTEM PERFORMANC	E	•	·			
Resolution				24		bits
		-				

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		50hZ/60Hz FIR filter, single-cycle conversions		1, 2, 4, 8, 16			
		50Hz FIR filter, single-cycle conversions		1.3, 2.5, 5, 10, 20, 35.6			
		60Hz FIR filter, single-cycle conversions		1.3, 2.5, 5, 10, 20, 36.5			
Data Rate		SINC4 filter, single-cycle conversions		1, 2.5, 5, 10, 15, 30, 60, 120, 240, 480, 960, 1920			
		SINC4 filter, continuous conversions		4, 10, 20, 40, 60, 120, 240, 480, 960, 1920, 3840, 7680		sps	
		SINC4 filter, duty cycle conversions		0.25, 0.0625, 1.25, 2.5, 3.75, 7.7, 15, 30, 60, 120, 240, 480			
Data Rate Tolerance		Determined by internal clock accuracy	-6		6	%	
Integral Nonlinearity		Differential input, reference buffer enabled, PGA = 1, tested at 16sps, measured at +25°C, V _{DDA} = 3.3V	-12	+2	+12		
(<u>Note 2</u>)	INL	Differential input, PGA = 2 - 16		6		ppmFS	
		Differential input, PGA = 32 - 64		11			
		Differential input, PGA = 128		15			
Offset Error		Referred to modulator input. After self and system calibration; $V_{REFP} - V_{REFN} =$ 2.5V, tested at 16sps, $V_{DDA} =$ 3.3V	-25	±0.5	+25	μV	
Offset Error Drift				±50		nV/°C	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
PGA Gain Settings				1, 2, 4, 8, 16, 32, 64, 128			
Digital Gain Settings				2, 4			
PGA Gain Error (<u>Note 1</u>)		No calibration		±0.3		%	
		Gain = 1, after calibration	-0.012		+0.012	70	
PGA Gain Drift				32		ppmFS/ °C	
Input Noise	Vn	FIR50Hz/60Hz, 16.8sps, PGA = 128		208		nV _{RMS}	
Noise-Free Resolution	NFR	FIR50Hz/60Hz, 16.8sps, PGA = 1		17.3		bits	
		50Hz/60Hz FIR filter, 50Hz ±1%, 16sps conversion, GBD		88			
	NMR	50Hz/60Hz FIR filter, 60Hz ±1%, 16sps single-cycle conversion, GBD		88			
Normal-Mode Rejection (Internal Clock)		50Hz FIR filter, 50Hz ±1%, 35.6sps single-cycle conversion, GBD		49		- dB -	
		60Hz FIR filter, 60Hz ±1%, 35.6sps single-cycle conversion, GBD		55.6			
		SINC4 filter, 50Hz ±1%, 10sps single- cycle conversion, GBD		88			
		SINC4 filter 60Hz ±1%, 10sps single- cycle conversion, GBD		91			
	NMR	50Hz/60Hz FIR filter, 50Hz or 60Hz ±1%, 16sps single-cycle conversion		91			
		50Hz FIR filter, 50Hz ±1%, 35.6sps single-cycle conversion		49.4		dB	
Normal-Mode Rejection (External Clock)		60Hz FIR filter, 60Hz ±1%, 35.6sps single-cycle conversion	55.6				
		SINC4 filter, 50Hz ±1%, 10sps single- cycle conversion		92.4			
		SINC4 filter, 60Hz ±1%, 10sps single- cycle conversion		92.6			
Common-Mode Rejection	CMR	DC rejection, any PGA gain		100		dB	
Common-Mode Rejection	CMR60	50Hz/60Hz rejection, PGA enabled	104				
Power Supply Rejection	PSRRA			94		dB	
REFERENCE INPUTS							
Reference Voltage Range		Reference buffer(s) disabled	V _{SSA} - 30m		V _{DDA} + 30m	v	
		Reference buffer(s) enabled	V _{SSA} + 0.1		V _{DDA} - 0.1		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Voltage Input		V _{REF} = V _{REFP} - V _{REFN}	0.75	2.5	V _{DDA}	V
Deference Input Current		Reference buffer disabled		2.1		μA/V
Reference Input Current		Reference buffer enabled	-200	61	+200	nA
Reference Input Capacitance		Reference buffers disabled		15		pF
MATCHED CURRENT SC	DURCES					
Matched Current Source Outputs				10, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 400, 600, 800, 1200, 1600		μA
Current Source Output Voltage Compliance		IDAC ≤ 250μA	0	(V _{DDA} - 0.7 V _{DDA} -	v
		IDAC = 1.6mA	0		1.2	<u> </u>
Initial Tolerance		T _A = +25°C, GBD	-5	±1	+5	%
Current Matching		Between IDACs		±0.1		%
Temperature Drift Matching		Between IDACs		10		ppm/C
Current Source Output Noise	۱ _N	Output current = 250µA; SINC4 filter, 60sps continuous; noise is referred to input		0.47		pA rms
V _{BIAS} OUTPUTS						
V _{BIAS} Voltage				V _{DDA} /2		V
V _{BIAS} Voltage Output Impedance				125k (active), 20k (passive) , 125k (passive)		Ω
SYSTEM TIMING						
Power-On Wake-Up Time		From V _{DDA} > V _{POR}		240		μs
		C _{FILTER} = 0		0.25		
PGA Power-Up Time		C _{FILTER} = 20nF		2		ms
		C _{FILTER} = 100nF		10		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ - Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		After changing gain settings to Gain = 1, C _{FILTER} = 0		0.25		
PGA Settling Time		After changing gain settings to Gain = 1, C _{FILTER} = 100nF		10		ms
		After changing gain settings to Gain = 128, C _{FILTER} = 0		2		
Input Multiplexer Power- Up Time		Settled to 21 bits with 10pF load		2		μs
Input Multiplexer Channel-to-Channel Settling Time		Settled to 21 bits with $2k\Omega$ external source resistor		2		μs
		Active generator; settled within 1% of final value; C_{LOAD} = 1µF		10		
V _{BIAS} Power-Up Time		125K passive generator; settled within 1% of final value; C _{LOAD} = 1µF		575		ms
		20K passive generator; settled within 1% of final value; C_{LOAD} = 1 μF		90		
		Active generator; settled within 1% of final value; C_{LOAD} = 1µF		10		
V _{BIAS} Settling Time		125K passive generator; settled within 1% of final value; C _{LOAD} = 1µF		605		ms
		20K passive generator; settled within 1% of final value; C_{LOAD} = 1 μF	100			
Matched Current Source Startup Time				110		μs
Matched Current Source Settling Time				12.5		μs

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
POWER SPECIFICATIO	NS						,	
			Standby mode, V _{DDA} = V _{REF} = V _{IN} = 3.3V		92			
V _{DDA} Current			Bypass mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		166			
		ADC0 only	Buffered mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		193			
			PGA enabled, IDAC, V_{BIAS} sources off, V_{DDA} = V_{REF} = V_{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		292		μA	
			Bypass mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		167			
			Buffered mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		193			

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		PGA enabled, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 60sps		292		

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
			Bypass mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps		74		
V _{DDA} Duty Cycle Power Mode		ADC0 only	Buffered mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps		89		
			PGA enabled, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps		196		Aų
		ADC1. ADC0 must be enabled in Standby mode	Bypass mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps		74		μ
			Buffered mode, IDAC, V _{BIAS} sources off, V _{DDA} = V _{REF} = V _{IN} = 3.3V, SINC4 filter, continuous conversions at 15sps		89		
		PGA enabled, IDAC, V_{BIAS} sources off, V_{DDA} = $V_{REF} = V_{IN} =$ 3.3V, SINC4 filter, continuous conversions at 15sps		196			

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—16-/24-Bit Δ-Σ ADC with PGA (continued)

 $(V_{DDA} = +3.3V, REFP - REFN = V_{DDA}, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. $T_A = +25^{\circ}C$ for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LDO						
V _{DD18} Output Capacitance			100			nF
V _{DD18} Output Voltage		V _{DD18} configured as an output	1.71	1.8	1.98	V

Electrical Characteristics—12-Bit DAC

 $(V_{DDA} = 3.3V, R_L = 10k\Omega \text{ and } C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. } T_A = +25^{\circ}C \text{ for typical specifications, unless otherwise noted. } V_{REF} = 1.5V. Limits are 100\% production tested at T_A = +25^{\circ}C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Resolution	DAC _R		12			bits	
Differential Nonlinearity	DNL	Power mode = 2 or 3, noise filter enabled GBD		±1		LSB	
Integral Nonlinearity	INL	Power mode = 2 or 3, noise filter enabled GBD		±1		LSB	
Offset Error	EO	Measure at V _{DDA} = 3.3V		4		mV	
Output Voltage Range	V _O	DAC12_OUT device pin; min code to max code, GBD	V _{SSA} + E _O		V _{DDA} - 0.5	V	
		Power mode = 3		6.1			
Output Impodonoo		Power mode = 2		8.9		kO	
Output Impedance		Power mode = 1		16.3		kΩ	
		Power mode = 0		97.7			
Voltage Output Settling		Noise filter enabled, code 400h to C00h, rising or falling, to ±0.5 LSB	4 0.03		ms		
Time	tSFS	Noise filter disabled, code 400h to C00h, rising or falling, to ±0.5 LSB					
Clitch Enormy		Power mode = 0, 1, or 2	12		Vyraa		
Glitch Energy		Power mode = 3, code 000h to A50h		12		V x ns	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—12-Bit DAC (continued)

 $(V_{DDA} = 3.3V, R_L = 10k\Omega \text{ and } C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. } T_A = +25^{\circ}C \text{ for typical specifications, unless otherwise noted. } V_{REF} = 1.5V. Limits are 100\% production tested at T_A = +25^{\circ}C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)$

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
			Power mode = 3		680		
		Static,	Power mode = 2		570		
		V _{REF} = 2.5V	Power mode = 1		458		1
			Power mode = 0		347		
		Static, V _{REF} = 2.0V	Power mode = 3		601		-
			Power mode = 2		509		-
	IDAC12		Power mode = 1		418		- μA
			Power mode = 0		327		
Active Current		Static, V _{REF} = 1.5V	Power mode = 3		497		
			Power mode = 2		431		
			Power mode = 1		364		
			Power mode = 0		297		
			Power mode = 3		407		
		Static,	Power mode = 2		361		-
		V _{REF} = 1.0V	Power mode = 1		304		
			Power mode = 0		284		
Power-On Time		Excluding reference)		10		μs

Electrical Characteristics—Internal Voltage Reference

 $(V_{DDA} = 3.3V, T_A = T_{MIN}$ to T_{MAX} unless otherwise noted. Internal reference mode, 4.7μ F at INT_REF; $V_{REF} = 1.5V$. $T_A = +25^{\circ}$ C for typical specifications, unless otherwise noted. Limits are 100% production tested at $T_A = +25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
			INT_REF 1.024V		1.024		
Output Voltage at	VINT_REF	T 125°C	INT_REF 1.50V		1.500		v
INT_REF		T _A = +25°C	INT_REF 2.048V		2.048		
			INT_REF 2.50V		2.500		
Internal Reference Temperature Coefficient	T _{CREF}	$T_{A} = -40^{\circ}C \text{ to } +105^{\circ}$			±50	ppm/°C	
Turn-On Time	t _{ON}	GBD		0.1 + (INT_VR EF x 1.8)	10	ms	
Leakage Current with INT_REF Output Disabled	I _{INT_REF}	GBD			15	50	nA
INT_REF Line Regulation					±50		μV/V
INT_REF Load Regulation	INT_Load	I _{SOURCE} = 0 to 500µ	JA, T _A = +25°C		10		μV/μA

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—Internal Voltage Reference (continued)

 $(V_{DDA} = 3.3V, T_A = T_{MIN} \text{ to } T_{MAX} \text{ unless otherwise noted. Internal reference mode, 4.7µF at INT_REF; } V_{REF} = 1.5V. T_A = +25^{\circ}C \text{ for typical specifications, unless otherwise noted. Limits are 100% production tested at } T_A = +25^{\circ}C. Limits over the operating temperature range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reference Supply Current		Buffer enabled		270		μA

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
MASTER MODE						-
SPI Master Operating Frequency	fмск	f _{SYS_CLK} = 100MHz, f _{MCK(MAX)} = f _{SYS_CLK} /2			50	MHz
SPI Master SCK Period	t _{MCK}			1/f _{MCK}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Sample Edge	^t мон		t _{MCK} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Low Idle	t _{MLH}			t _{MCK} /2		ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCK} /2		ns
SLAVE MODE						
SPI Slave Operating Frequency	fsck				50	MHz
SPI Slave SCK Period	^t scк			1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	t _{SCH} , t _{SCL}			t _{SCK} /2		
SSx Active to First Shift Edge	tSSE			10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	tsis			5		ns
MOSI Input from SCK Sample Edge Transition Hold	t _{SIH}			1		ns
MISO Output Valid After SCLK Shift Edge Transition	tsov			5		ns
SCK Inactive to SSx Inactive	tssd			10		ns
SSx Inactive Time	t _{SSH}			1/f _{SCK}		μs

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—SPI (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MISO Hold Time After SSx Deassertion	^t SLH			10		ns

Electrical Characteristics—I²C

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD MODE						
Output Fall Time	t _{OF}	Standard mode, from $V_{IH(MIN)}$ to $V_{IL(MAX)}$		150		ns
SCL Clock Frequency	fSCL		0		100	kHz
Low Period SCL Clock	tLOW		4.7			μs
High Time SCL Clock	t _{HIGH}		4.0			μs
Setup Time for Repeated Start Condition	^t SU;STA		4.7			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs
Data Setup Time	t _{SU;DAT}			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	tsu;sto		4.0			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μs
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs
FAST MODE						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	fSCL		0		400	kHz
Low Period SCL Clock	tLOW		1.3			μs
High Time SCL Clock	t _{HIGH}		0.6			μs
Setup Time for Repeated Start Condition	^t SU;STA		0.6			μs
Hold Time for Repeated Start Condition	^t HD;STA		0.6			μs

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—I²C (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	^t su;sto		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST MODE PLUS			i			
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	tLOW		0.5			μs
High Time SCL Clock	thigh		0.26			μs
Setup Time for Repeated Start Condition	^t su;sta		0.26			μs
Hold Time for Repeated Start Condition	^t HD;STA		0.26			μs
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	t _{SU;STO}		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Electrical Characteristics—I²S

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bit Clock Frequency	f _{BCLKS}				25	MHz
Bit Clock Period	t _{BCLKS}		1/f _{BCLKS}			ns
BCLK High Time	twbclkhs			0.5		1/f _{BCLKS}
BCLK Low Time	twbclkls			0.5		1/f _{BCLKS}
LRCLK Setup Time	^t LRCLK_BCLKS			25		ns
Delay Time, BCLK to SD (Output) Valid	^t BCLK_SDOS			12		ns
Setup Time for SD (Input)	tsu_sdis			6		ns
Hold Time SD (Input)	^t HD_SDIS			3		ns

Note 1: Gain error does not include zero-scale errors. It is calculated as (full-scale error – offset error). **Note 2:** ppmFS is parts per million of full scale.

Figure 1. SPI Master Mode Timing Diagram

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Figure 2. SPI Slave Mode Timing Diagram

Figure 3. I²C Timing Diagram

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Figure 4. I²S Timing Diagram

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Pin Configuration

68 TQFN

Pin Description

		Fl						
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION	
POWE	POWER (See the <u>Applications Information</u> section for bypass capacitor recommendations.)							
65	V _{CORE}	_	_	_	_	_	Digital Power-Supply Input. Bypass with 100nF to V_{SS} and 1µF with 10m Ω to 150m Ω ESR to V_{SS} .	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

68 TQFN

			Fl					
PIN NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION		
64	V _{DD18}	_	_	_	_	_	This device pin can be configured as a LDO output or a voltage supply input. Bypass with 100nF to V_{SS} . Do not connect this device pin to any other external circuitry.	
63	V _{DDIO}	_	_	_	_	_	Power Supply Input. This pin must always be connected to the V _{DDA} device pin at the PCB level. Bypass this pin with 100nF to V _{SS} and 1 μ F with 10m Ω to 150m Ω ESR to V _{SS} .	
27	V _{DDA}	_	_	_	_	_	Analog Supply Voltage. This pin must always be connected to the V_{DDIO} device pin at the PCB level. Bypass this pin to V_{SSA} with 1.0μ F and 0.01μ F capacitors as close as possible to the package.	
58	V _{REG1}	_		_	_	_	Bypass with 4.7nF to V _{SS} . Do not connect this device pin to any other external circuitry.	
30, 62	V _{SS}	—	_	_	_	—	Digital Ground	
26	V _{SSA}	_	_	_	_	_	Analog Ground	
EP	Exposed Pad	_	_	_	_	_	Exposed Pad. This pad must be connected to V _{SS} . Refer to <u>Application Note 3273: Exposed</u> <u>Pads: A Brief Introduction</u> for additional information.	
RESET	AND CONT	ROL						
61	RSTN	—	_			_	Active-Low, External System Reset Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies) and begins execution. This pin has an internal pullup to the V _{DDIO} supply.	
CLOCK								
59	HFXIN	—	_	_	_	_	RF Crystal Oscillator Input. Connect the crystal between HFXIN and HFXOUT. Optionally, this pin can be configured as the input for an external square-wave source. See the <u>Electrical Characteristics</u> table for details of the crystal requirements.	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

68 TQFN

			FL				
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION
60	HFXOUT	_	_	_	_	_	RF Crystal Oscillator Output. Connect the crystal between HFXIN and HFXOUT. See the <u>Electrical</u> <u>Characteristics</u> table for details of the crystal requirements.
N.A.	EXT_CLK		—	—	—	—	See Pin Description P0.10 for details.
16-/24	-BIT DELTA-	SIGMA ADC V	VITH PGA				
68	ADC0_R DY	_			_	_	ADC0 Ready
1	ADC1_R DY		_	_	_	—	ADC1 Ready
17	REF0P	_	_	_	_	_	Positive Differential Reference 0 Input. REF0P must be more positive than REF0N.
19	REF0N	_	_	_	_	_	Negative Differential Reference 0 Input. REF0P must be more positive than REF0N.
36	REF1P	_	_	_	_	_	Positive Differential Reference 1 Input. REF1P must be more positive than REF1N.
35	REF1N	_	_	_	_	_	Negative Differential Reference 1 Input. REF1P must be more positive than REF1N.
15	CAP0P	_	_	_	_	_	ADC0 PGA Positive Output. Connect 1nF capacitor across CAP0P and CAP0N.
16	CAPON	_	_	_	_	_	ADC0 PGA Negative Output. Connect 1nF capacitor across CAP0P and CAP0N.
38	CAP1P	_	_	_	_	_	ADC1 PGA Positive Output. Connect 1nF capacitor across CAP1P and CAP1N.
37	CAP1N	_	_	_	_	_	ADC1 PGA Negative Output. Connect 1nF capacitor across CAP1P and CAP1N.
20	AINO	_	_	_	_		Channel 0 Analog Input/Positive Differential Reference Input. When used as an analog input, may serve as either the positive or negative differential input. May also serve as current source output. When used as a reference input paired with AIN1, AIN0 must be more positive than AIN1.
Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

			FL		DE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION
21	AIN1	_	_	_	_	_	Channel 1 Analog Input/Negative Differential Reference Input. When used as an analog input, may serve as either the positive or negative differential input. May also serve as current source output. When used as a reference input paired with AIN0, AIN0 must be more positive than AIN1.
22	AIN2	_	_	_	_	_	Channel 2 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
23	AIN3	_	_	_		_	Channel 3 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
24	AIN4	_	_	_	_	_	Channel 4 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
25	AIN5	_	_	_	_	_	Channel 5 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
28	AIN6	_	_	_	_	_	Channel 6 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
29	AIN7	_	_	_	_	_	Channel 7 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
31	AIN8	—	—	—	_	—	Channel 8 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
32	AIN9		_	_	_	_	Channel 9 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

			Fl		DE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION
33	AIN10	_	_	_	_	_	Channel 10 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
34	AIN11			_	_	_	Channel 11 Analog Input. May serve as either the positive or negative differential input paired with any of the other AINx analog inputs. May also serve as current source output.
12-BIT	DAC						
40	DAC12_ OUT	_	_	_	_	—	12-Bit DAC Analog Voltage Output
INTER	NAL REFER	ENCE					
39	INT_REF	_	_	_	_	_	Internal Reference Output. It must be bypassed to V_{SSA} with a 4.7 μF capacitor.
GPIO A	AND ALTERI	NATE FUNCTI	ON				
9	P0.0	P0.0	SWDIO	_	TMR0C_IA	_	Single-Wire Debug I/O; Timer0 Port Map C Input
10	P0.1	P0.1	SWDCLK	_	TMR0C_OA	_	Single-Wire Debug Clock; Timer0 Port Map C Output
11	P0.6	P0.6	I2C0A_SCL	LPTMR0B_I A	TMR3C_IA	_	I2C0 Port Map A Serial Clock; Low- Power Timer0 Port Map B Input 2 Bits or Lower 16 Bits; Timer3 Port Map C Input 32 Bits or Lower 16 Bits
12	P0.7	P0.7	I2C0A_SDA	LPTMR0B_ OA	TMR3C_OA	—	I2C0 Port Map A Serial Data; Low- Power Timer0 Port Map B Output 32 Bits or Lower 16 Bits; Timer3 Port Map C Output 32 Bits or Lower 16 Bits
41	P0.8	P0.8	UART0A_R X	I2S0B_SDO	TMR0C_IA	—	UART0 Port Map A Rx; I2S0 Port Map B Serial Data Output; Timer0 Port Map C Input 32 Bits or Lower 16 Bits
42	P0.9	P0.9	UARTOA_T X	I2S0B_LRC LK	TMR0C_OA	_	UART0 Port Map A Tx; I2S0 Port Map B Left/Right Clock; Timer0 Port Map C Output 32 Bits or Lower 16 Bits

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

			Fl		DE	-		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION	
43	P0.10	P0.10	UARTOA_C TS	I2S0B_BCL K	TMR1C_IA	EXT_CLK	UART0 Port Map A CTS; I2S0 Port Map B Bit Clock; Timer1 Port Map C Input 32 Bits or Lower 16 Bits. This pin can be used to source a clock signal. It can also be used to receive a clock signal. This clock signal can be used for the 16-/24-bit delta- sigma converters. See the <u>Electrical</u> <u>Characteristics</u> table for the External _Clock parameters.	
44	P0.11	P0.11	UART0A_R TS	I2S0B_SDI	TMR1C_OA	_	UART0 Port Map A RTS; I2S0 Port Map B Serial Data Input; Timer1 Port Map C Output 32 Bits or Lower 16 Bits	
45	P0.13	P0.13	_		TMR2C_OA	SPI1D_SS0	Timer2 Port Map C Output 32 Bits or Lower 16 Bits; SPI1 Port Map D Slave Select 0	
46	P0.14	P0.14	SPI1A_MIS O	UART2B_R X	TMR3C_IA	_	SPI1 Port Map A Master In Slave Out; UART2 Port Map B Rx; Timer3 Port Map C Input 32 Bits or Lower 16 Bits	
47	P0.15	P0.15	SPI1A_MO SI	UART2B_T X	TMR3C_OA	_	SPI1 Port Map A Master Out Slave In; UART2 Port Map B Tx; Timer3 Port Map B Output 32 Bits or Lower 16 Bits	
48	P0.16	P0.16	SPI1A_SCK	UART2B_C TS	TMR0C_IA	_	SPI1 Port Map A Serial Clock; UART2 Port Map B CTS; Timer0 Port Map C Input 32 Bits or Lower 16 Bits	
53	P0.17	P0.17	SPI1A_SS0	UART2B_R TS	TMR0C_OA	_	SPI1 Port Map A Slave Select 0; UART2 Port Map B RTS; Timer0 Port Map C Output 32 Bits or Lower 16 Bits	
54	P0.18	P0.18	I2C2A_SCL	_	TMR1C_IA	_	I2C2 Port Map A Serial Clock; Timer1 Port Map C Input 32 Bits or Lower 16 Bits	
55	P0.19	P0.19	I2C2A_SDA	_	TMR1C_OA	_	I2C2 Port Map A Serial Data; Timer1 Port Map C Output 32 Bits or Lower 16 Bits	
66	P0.21	P0.21	CM4_TX	_	TMR2C_OA	_	CM4 Tx Event Output; Timer2 Port Map C Output 32 Bits or Lower 16 Bits	
57	P0.31	P0.31	-		TMR3C_OA		Timer3 Port Map C Output 32 Bits or Lower 16 Bits	
49	P1.7	P1.7	_	_	_	_	GPIO Only	
51	P1.8	P1.8	UART2A_R X	UART2B_R TS	_	—	UART2 Port Map A Rx; UART2 Port Map B RTS	

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

			FL		DE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	Alternate Function 3	Alternate Function 4	FUNCTION
5	P1.9	P1.9	UART2A_T X	_	_	—	UART2 Port Map A Tx
6	P1.10	P1.10	UART2A_C TS	_	_	—	UART2 Port Map A CTS
7	P1.11	P1.11	UART2A_R TS	_	TMR2C_OA	_	UART2 Port Map A RTS; Timer2 Port Map C Output 32 Bits or Lower 16 Bits
8	P1.12	P1.12	—	_	—	_	GPIO Only
NO CC	NNECT						
3	FSK_IN	_	_	_	_	_	Do Not Connect. Internally connected. Do not make any electrical connection to this pin, including power supply grounds.
4	FSK_OU T	_	_	_	_	_	Do Not Connect. Internally connected. Do not make any electrical connection to this pin, including power supply grounds.
2	HART_R EF	—	—	—	—	—	This pin must be connected to a 0.1µF capacitor.
13, 14, 18, 50, 52, 56, 67	N.C.	_	_	_	_	_	No Connection. Not internally connected.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Functional Diagrams

Power Supply Operational Modes

Figure 5. Power Supply Operation Modes

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Detailed Description

The MAX32675 is a highly integrated, mixed-signal, ultra-low-power microcontroller for industrial applications and is especially suitable for 4-20mA loop-powered sensors and transmitters. It is based on an ultra-low-power Arm Cortex-M4 with FPU and includes 384KB of flash and 160KB of SRAM. ECC, capable of SEC-DED, is implemented over the entire flash, SRAM, and cache to ensure ultra-reliable code execution for demanding applications.

An AFE provides two 12-channel Δ - Σ ADCs with features and specifications that are optimized for precision sensor measurement. Each Δ - Σ ADC can digitize external analog signals as well as system temperature and supplies. A PGA with gains of 1x to 128x precedes each ADC. ADC outputs can be optionally converted on the fly from integer to single-precision floating-point format. A 12-bit DAC is also included. The integrated temperature sensor can be used with the internal sense element or an external diode for temperature compensation of sensor outputs.

The device also includes a trust protection unit (TPU), providing robust security features such as an AES engine, TRNG, and secure boot.

Arm Cortex-M4 Processor with FPU Engine

The Arm Cortex-M4 processor with FPU combines high-efficiency signal processing functionality with low power, low cost, and ease of use.

The Arm Cortex-M4 processor with FPU supports single instruction multiple data (SIMD) path DSP extensions, providing:

- Four parallel 8-bit add/sub
- Floating point single precision
- Two parallel 16-bit add/sub
- Two parallel MACs
- 32- or 64-bit accumulate
- Signed, unsigned, data with or without saturation

Memory

Internal Flash Memory

384KB of internal flash memory with error correction provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 160KB SRAM provides low-power retention of application information in all power modes except STORAGE. For enhanced system reliability, the SRAM can be configured as 128KB with ECC single error correction, double error detection (SED-DED). The SRAM can be divided into granular banks that create a flexible SRAM retention architecture. This data retention feature is optional, and is configurable. This granularity allows the application to minimize its power consumption by only retaining the most essential data.

Clocking Scheme

Multiple clock sources can be selected as the system clock:

- Internal primary oscillator (IPO) at a nominal frequency of 100MHz
- Internal nanoring oscillator at 80kHz
- Internal baud rate oscillator at 7.3728MHz (IBRO)
- External RF oscillator at 16MHz to 32MHz (ERFO) (external crystal required)

The AFE is configured by SPIO and is clocked by the built-in Δ - Σ clock generation or the EXT_CLK signal. The APB clock or the INRO can clock the LPTMR0 in the AOD.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Figure 6. Clocking Scheme Diagram

General-Purpose I/O and Special Function Pins

Most general-purpose I/O (GPIO) pins share both a firmware-controlled I/O function and one or more special function signals associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Though this multiplexing between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the *Electrical Characteristics* tables.

In GPIO mode, each pin of a port has an interrupt function that can be independently enabled and configured as a level-

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

or edge-sensitive interrupt. All GPIOs share the same interrupt vector. Some packages do not have all of the GPIOs available.

When configured as GPIOs, the following features are provided. These features can be independently enabled or disabled on a per-pin basis.

- Configurable as input, output, bidirectional, or high-impedance
- Optional internal pullup resistor or internal pulldown resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX32675 provides up to 23 GPIOs.

Power Management

Power Management Unit (PMU)

The PMU provides the optimal mix of high-performance and low-power consumption. It exercises intelligent, precise control of power distribution to the CPU and peripheral circuitry.

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple clock domains
- Fast wakeup of powered-down peripherals when activity detected

ACTIVE Mode

In this mode, the CPU is executing application code and all digital and analog peripherals are available on demand. Dynamic clocking disables local clocks in peripherals not in use. This mode corresponds to the Arm Cortex-M4 processor with FPU Active mode. The power mode of the AFE is software-controlled.

SLEEP Mode

This mode allows for lower power consumption operation than active mode. The CPU is asleep, peripherals are on, and the standard DMA block is available. The GPIO or any active peripheral can be configured to interrupt and cause transition to the ACTIVE mode. This mode corresponds to the Arm Cortex-M4 processor with FPU Sleep mode. The power mode of the AFE is software-controlled.

DEEPSLEEP Mode

In this mode, CPU and critical peripheral configuration settings and all volatile memory are preserved.

The device status is as follows:

- CPU is powered down. System state and all SRAM is retained.
- The GPIO pins retain their state.
- The transition from DEEPSLEEP to ACTIVE mode is faster than the transition from BACKUP mode because system initialization is not required.
- The system oscillators are all disabled to provide additional power savings over SLEEP mode.
- LPTMR0 can be active and are optional wake-up sources

This mode corresponds to the Arm Cortex-M4 with FPU DeepSleep mode. The power mode of the AFE is softwarecontrolled.

BACKUP Mode

This mode places the CPU in a static, low-power state. The BACKUP mode supports the same wake-up sources as the DEEPSLEEP mode.

The device status is as follows:

- CPU is powered down.
- SRAM retention as per <u>Table 1</u>. Each of the RAM blocks can be retained.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

• LPTMR0 can be active and is an optional wake-up source.

The power mode of the AFE is software-controlled.

Table 1. BACKUP Mode RAM Retention

RAM BLOCK	RAM SIZE WITHOUT ECC (KB)	RAM SIZE WITH ECC (KB)
SYSRAM0	20	16
SYSRAM1	20	16
SYSRAM2	40	32
SYSRAM3	80	64

STORAGE Mode

The device status is as follows:

- CPU is powered off.
- All peripherals are powered off.
- Wake-up from GPIO interrupt.
- No SRAM retention.

The power mode of the AFE is software-controlled.

Standard DMA Controller

The standard direct memory access (DMA) controller provides a means to offload the CPU for memory/peripheral data transfer leading to a more power-efficient system. It allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 8 channel
- Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO.

Windowed Watchdog Timer (WDT)

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed watchdog timer (WDT), which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific window of time.

The WDT supports multiple clock option:

- 100MHz IPO
- 16MHz to 32MHz ERFO (external crystal required)
- 7.3728MHz IBRO
- 80kHz INRO
- PCLK

The MAX32675 provides two instances of the windowed watchdog timer (WDT0, WDT1).

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generate pulse-width modulated (PWM) signals with minimal software interaction.

The timers provide the following features:

- 32-bit up/down auto-reload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating, or capture
- Timer output pin
- TMR0–TMR3 can be configured as 2 × 16-bit general-purpose timers
- Timer interrupt

The MAX32675 provides timer instances as shown in <u>Table 2</u>. LPTMRx is capable of operation in the Low Power, SLEEP, DEEPSLEEP, and BACKUP modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all the ports depending on the device configuration.

INSTANCE	SINGLE	DUAL	POWER MODE	CLOCK SOURCE				
INSTANCE	32 BIT	16 BIT	POWER MODE	AOD_PCLK	PCLK	IBRO	ERFO	INRO
TMR0	Yes	Yes	ACTIVE SLEEP	No	Yes	Yes	Yes	No
TMR1	Yes	Yes	ACTIVE SLEEP	No	Yes	Yes	Yes	No
TMR2	Yes	Yes	ACTIVE SLEEP	No	Yes	Yes	Yes	No
TMR3	Yes	Yes	ACTIVE SLEEP	No	Yes	Yes	Yes	No
LPTMR0	Yes	No	ACTIVE SLEEP	Yes	No	No	No	Yes
	i es	INO	DEEPSLEEP BACKUP	No		INO	INO	165

Table 2. Timer Configuration Options

Serial Peripherals

I²C Interface (I2C)

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many, or many-to-many communications medium. These engines support standard-mode, fast-mode, fast-mode plus, and high-speed mode I²C speeds. It provides the following features:

- Master or slave mode operation
- Supports up to four different slave addresses in slave mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition
- Interactive receive mode
- Transmit FIFO preloading
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates
 - Standard mode: 100kbps
 - Fast mode: 400kbps
 - Fast mode plus: 1000kbps

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

- High-speed mode: 3400kbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX32675 provides I²C instances as shown in Table 3.

Table 3. I²C Configuration Options

INSTANCE	
12C0, 12C2	

Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a highly configurable, flexible, and efficient synchronous interface among multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either slave or master mode and provide the following features:

- SPI modes 0, 1, 2, 3 for single-bit communication
- 3- or 4-wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Multimaster mode fault detection
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Slave select assertion and de-assertion timing with respect to leading/trailing SCK edge

The MAX32675 provides SPI instances as shown in Table 4.

Table 4. SPI Configuration Options

INSTANCE	DATA	SLAVE SELECT LINES	MAXIMUM FREQUENCY MASTER MODE (MHz)	MAXIMUM FREQUENCY SLAVE MODE (MHz)
SPI1	3 wire, 4 wire	1	50	50

I²S Interface (I2S)

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Master and slave mode operation
- Support for 4 channels
- 8, 16, 24, and 32 bit frames
- Receive and transmit DMA support
- Wakeup on FIFO status (full/empty/threshold)
- Pulse density modulation support for receive channel
- Word-select polarity control
- First bit position selection
- Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes
- Transmitter FIFO depth of 32 bytes

The MAX32675 provides one instance of the I²S peripheral (I2S0).

UART

The universal asynchronous receiver-transmitter (UART) interface supports full-duplex asynchronous communication

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry-standard request to send (RTS) and clear to send (CTS) flow control signaling. Each instance is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 8-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun, and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- Programmable 9th-bit parity support
- Multidrop support
- Start/stop bit support
- Hardware flow control using RTS/CTS
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX32675 provides UART instances as shown in Table 5.

Table 5. UART Configuration Options

INSTANCE	POWER MODE		CLOCK	SOURCE		
INSTANCE	POWERWODE	AOD_PCLK	PCLK		ERFO	INRO
UART0, UART2	ACTIVE	No	Yes	Yes	Yes	No

16-/24-Bit Δ - Σ Analog-to-Digital Converter with Programmable Gain Amplifier

A low-power, multichannel, 24-bit Δ - Σ ADC has features and specifications optimized for the precision measurement of sensors and other analog signal sources. The architecture includes a low-noise programmable gain amplifier (PGA), low-power input buffers, programmable matched current sources, differential/single-ended input multiplexer, and integrated on-chip oscillator.

- PGA with Available Gains 1x to 128x
- Very High Input Impedance
- Optimizes Overall Dynamic Range
- Low-Power Input Buffers
- Provide Input Isolation
- Selectable Reference
 - Internal Differential (V_{REF})
 - External Differential
- Programmable Current Sources
 - Bias for Resistive Sensors
 - 16 Current Levels Available
 - Detection of Broken Sensor Wires
- 12 Analog Inputs
 - 6 Differential or 12 Single Ended
- Sample Rates up to 61440 Samples per Second
- FIR Digital Filters
 - Provides Single-Cycle Settling in 16ms
 - 90dB of Noise Rejection at 50Hz and 60Hz
- On-Chip Clock Source
- No External Components Required
- External Clock Capable
- Sample Ready Interrupts
 - ADC0_RDY and ADC1_RDY

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

The MAX32675 provides two instances of this ADC (ADC_ZERO, ADC_ONE) that share the multiplexed 12 analog inputs (AIN0–AIN11).

12-Bit Digital-to-Analog Converter

The 12-bit digital-to-analog (DAC) outputs a single-ended voltage. It can be set independently to generate either a static output voltage or to generate a series of preloaded sample outputs at a specified sample rate.

The 12-Bit DAC peripheral support the following features:

- Configurable clock rate and output sample rate.
- Selectable output voltage reference.
- Can be set to output a static voltage level, a preset number of samples at a configurable sample rate, or samples continuously at a configurable sample rate.
- Interpolation filter allows for linearly interpolated output samples to be generated between each pair of output samples (2 to 1, 4 to 1, or 8 to 1).
- DAC output samples are pulled from a FIFO allow continuous sample output generation.

Security

AES

The dedicated hardware-based AES engine supports the following algorithms:

- AES-128
- AES-192
- AES-256

The AES keys are automatically generated by the engine and stored in a dedicated flash to protect against tampering. Key generation and storage are transparent to the user.

True Random Number Generator (TRNG)

Random numbers are a vital part of a secure application. The TRNG provides random numbers for use as cryptographic seeds or strong encryption keys to ensure data privacy.

Software can use random numbers to trigger asynchronous events that result in nondeterministic behavior. This helps thwart replay attacks or key search approaches. A high-entropy source must continuously update an effective true random number generator (TRNG).

A physically unpredictable entropy source continuously drives the provided TRNG. It generates a 128-bit true random number in 128 system clock cycles.

The TRNG can support the system-level validation of many security standards such as FIPS 140-2, PCI-PED, and Common Criteria. Contact Maxim for details of compliance with specific standards.

CRC Module

A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application software. The CRC module supports the following polynomials:

- CRC-16-CCITT
- CRC-32 (X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1)

Bootloader

The bootloader allows loading and verification of program memory through a serial interface. Features include:

- Bootloader interface through UART
- Program loading of Motorola[™] SREC format files
- Permanent lock state prevents altering or erasing program memory
- Access to the USN for device or customer application identification
- Disable SWD interface to block debug access port functionality

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Secure Boot

Following every reset, the device performs a secure boot to confirm that the root of trust has not been compromised. The secure boot verifies the integrity of the program memory to confirm it has not been modified or corrupted, ensuring the trustworthiness of the application software. An HMAC SHA-256 hash is performed over program memory and compared against a loaded value during the bootloader configuration process. If the two values match, the application software is considered valid, and the device begins code execution. Programs that fail the integrity check indicate intentionally or unintentionally corrupted or modified program memory. The device then transitions to safe mode, which prevents the execution of the customer code. During the development phase, the bootloader can be reactivated and a new, trusted program memory loaded. Devices with the secure boot feature also provide an optional challenge/response that authenticates before executing bootloader commands.

Debug and Development Interface (SWD)

The serial wire debug interface is used for code loading and ICE debug activities. All devices in mass production have the debugging/development interface enabled.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Applications Information

Bypass Capacitors

The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The <u>Pin Description</u> table indicates which pins should be connected to bypass capacitors, and the appropriate ground plane.

It is recommended that one instance of a bypass capacitor should be connected to each pin/ball of the IC package. For example, if the pin description table shows four device pins associated with voltage supply A, a separate capacitor should be connected to each pin for a total of four capacitors.

Capacitors should be placed as close as possible to their corresponding device pins. Pins which recommend more than one value of capacitor per pin should place them in parallel with the lowest value capacitor first, closest to the pin.

Bootloader Activation

The device automatically tests the bootloader stimulus pins on any reset. If the stimulus pins are in the states shown in <u>Table 6</u>, the device activates the bootloader and waits for the host to initiate communication. Once the bootloader is activated, the stimulus pins can be changed to any state. The bootloader is deactivated by performing another reset with the stimulus pins in their inactive state.

Table 6. Bootloader Activation Summary

PART NUMBER	BOOTLOADER COM	MUNICATION PORT	ACTIVATION PINS
PART NUMBER	RECEIVE	TRANSMIT	ACTIVATION FINS
All Versions	UART0A_RX (P0.8)	UART0A_TX (P0.9)	P0.8 (Low), P0.1 (Low)

Ordering Information

PART	FLASH (KB)	SRAM (KB)	BOOTLOADER	SECURE BOOT	DEFAULT OSCILLATOR AFTER POR	PIN- PACKAGE
MAX32675ATK+	384	160	YES	YES	IPO	68 TQFN
MAX32675ATK+T	384	160	YES	YES	IPO	68 TQFN

T = Tape and reel.

Ultra-Low-Power Arm Cortex-M4F with Precision Analog Front-End for Industrial and Medical Sensors

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/21	Initial release	—
1	1/22	Updated Pin Description and Detailed Description	39, 40, 42

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.