

v03.0805

ROHS EARTH FRIENDLY

Typical Applications

The HMC182S14 / HMC182S14E is ideal for:

• 800 - 1000 MHz Basestation

HMC182S14 / 182S14E

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 2 GHz

Features

Low Insertion Loss: 0.8dB Integrated 2:4 Decoder 14 Lead SOIC Package

Functional Diagram

General Description

The HMC182S14 & HMC182S14E are low-cost terminated SP4T switches in 14-lead SOIC packages for use in antenna diversity, switched filter banks, gain/attenuation selection, and general channel multiplexing applications. The switch can control signals up to 2 GHz. A 2:4 decoder is integrated on the switch, requiring only 2 control lines and a negative bias to select each RF path. The 2:4 decoder replaces 4 to 8 control lines normally required by GaAs SP4T switches. The HMC182S14(E) are drop-in replacements for the HMC165S14 in applications requiring low "off state" VSWR. See positive bias / TTL SP4T HMC241QS16.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, For 0/-5V Control and Vee = -5V in a 50 Ohm System

Parameter	Frequency	Min.	Тур.	Max.	Units	
Insertion Loss	DC - 1.0 GHz DC - 2.0 GHz		0.7 0.8	1.1 1.2	dB dB	
Isolation	DC - 0.5 GHz DC - 1.0 GHz DC - 2.0 GHz	41 36 28	45 40 32		dB dB dB	
Return Loss	"On State" "On State" "Off State" "Off State"	DC - 1.0 GHz DC - 2.0 GHz DC - 1.0 GHz DC - 2.0 GHz	21 16 17 13	25 20 21 17		dB dB dB dB
Input Power for 1 dB Compression	50 MHz 0.5 - 2.0 GHz		22 24		dBm dBm	
Input Third Order Intercept (Two-Tone Input Power = 7 dBm Each Tone).	50 MHz 0.5 - 1.0 GHz 0.5 - 2.0 GHz	25 41 37	30 45 41		dBm dBm dBm	
Switching Characteristics		DC - 2.0 GHz				
tRISE, tI tON, tOFF (50% C			25 50		ns ns	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0805

Insertion Loss

Return Loss

Bias Voltage & Current

		Vee Range = -5.0 Vdc ± 10%			
Ve (Vc			le	e (Typ.) (mA)	lee (Max.) (mA)
-5	.0			4.0	7.0

Control Voltages

State	Bias Condition
Low	0 to -3 VDC @ 70 uA Typ.
High	-5 to -4.2 VDC @ 5 uA Typ.

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 2 GHz

Isolation Between Several RF I/Os

Truth Table

Control Input		Signal Path State
A	В	RFCOM to:
High	High	RF1
Low	High	RF2
High	Low	RF3
Low	Low	RF4

10

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0805

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 2 GHz

Absolute Maximum Ratings

Bias Voltage Range (Port Vee)	-7 Vdc	
Control Voltage Range (A & B)	Vee -0.5V to +1.0 Vdc	
Channel Temperature	150 °C	
Thermal Resistance (Insertion Loss Path)	123 °C/W	
Thermal Resistance (Terminated Path)	260 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
Maximum Input Power	+27 dBm (<500 MHz) +30 dBm (>500 MHz)	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

10

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Leadframe Plating	MSL Rating	Package Marking [3]
HMC182S14	Low Stress Injection Molded Plastic Silica and Silicon Impregnated	Sn/Pb Solder	MSL1 ^[1]	HMC182 XXXX
HMC182S14E	HMC182S14E RoHS-compliant Low Stress Injection Molded Plastic Silica and Silicon Impregnated		MSL1 ^[2]	HMC182 XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SWITCH, DC - 2 GHz

GaAs MMIC SP4T NON-REFLECTIVE

v03.0805

TTL Interface Circuit

Note:

Control inputs A and B can be driven directly with TTL logic with -5 Volts applied to theHCT logic gate Vee pin and to Vee (pin 10) of the RF switch.

10

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0805

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 2 GHz

Evaluation PCB

List of Materials for Evaluation PCB 101672 [1]

Item	Description
J1 - J5	PCB Mount SMA RF Connector
J6 - J9	DC Pin
C1 - C5	330 pF capacitor, 0402 Pkg.
C6 - C8	10,000 pF capacitor, 0603 Pkg.
U1	HMC182S14 / HMC182S14E SP4T Switch
PCB [2]	101656 Evaluation PCB

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0805

Notes:

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 2 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.