

SUF-1000

Cascadable pHEMT MMIC Amplifier DC to 20GHz

RFMD's SUF-1000 is a monolithically matched high IP₃ broadband pHemt MMIC amplifier. The self-biased directcoupled topology provides exceptional cascadable performance from DC to 20GHz. Its efficient operation from a single 5V supply and its compact size (0.88mm x 0.75mm) make it ideal for high-density multi-chip module applications. It is well suited for wideband instrumentation and directconversion systems.

Package: Die, 0.88mm x 0.75mm

Features

- Broadband Flat Gain = 10dB
- P1dB = 14dBm
- Direct-Coupled Topology
- Efficient Single-Supply Operation: 5V, 45mA
- Low Gain Variation versus Temperature
- Compact Die Size (0.75mm x 0.88m)
- Patented Self-Bias Darlington

Applications

- Ultra-Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications
- Replaces Traditional Dual-Supply Distributed Amplifiers

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	70	mA
Max Device Voltage (V _D)	4	V
Max RF Input Power	20	dBm
Max Dissipated Power	280	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to +85	°C
Max Storage Temperature	-65 to +150	°C
Human Body Model	Class 1A	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table below. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L)/R_{TH}$, j - I and T_L = Backside of die.

✓ rfmd ≫ RFMD Green: RoHS compliant per EU Directive 2011/65/EU, halogen free per IEC 61249-2-21, <1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony solder.

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Parameter	Specification			Unit	O an dittan		
Parameter	Min	Тур	Max	Unit	Condition		
General Performance					Test Conditions: V = 5.0V R _{BIAS} = 35Ω, I _D = 46mA, OIP ₃ Tone Spacing = 1MHz, P _{OUT} per tone = 0dBmZ _S = Z _L = 50Ω, 25°C, GSG Probe Data with Bias Tees		
Small Signal Gain		10.5		dB	2GHz and 6GHz		
Sinali Signal Gali		9.0		dB	16GHz		
Output Power at 1dB Compression		14.0		dBm	2GHz, 6GHz, and 16GHz		
		26.0		dBm	2GHz and 6GHz		
Output Third Order Intercept Point		25.5		dBm	16GHz		
Noise Figure		4.5		dB	2GHz and 6GHz		
		5.0		dB	16GHz		
Input Return Loss		-37.0		dB	2GHz		
		-20.5		dB	6GHz		
		-11.5		dB	16GHz		
Output Return Loss		-21.5		dB	2GHz		
		-17.5		dB	6GHz		
		-11.0		dB	16GHz		
Reverse Isolation		-21.0		dB	2GHz		
		17.5		dB	6GHz		
		-17.0		dB	16GHz		
Device Operating Voltage		3.4		V			

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

DS140108

Parameter	Specification			Unit	Condition
	Min	Тур	Max	Onit	Condition
General Performance					Test Conditions: V = 5.0V R_{BIAS} = 35 Ω , I _D = 46mA, OIP3 Tone Spacing = 1MHz, P _{OUT} per tone = 0dBmZ _S = Z _L = 50 Ω , 25°C, GSG Probe Data with Bias Tees
Device Operating Current		46		mA	
Gain Variation vs. Temperature		-0.01		dB/°C	
Thermal Resistance (junction to backside)		262		°C/W	

Typical Performance (GSG Probe Data)

Frequency (GHz)	VD (V)	Current (mA)	Gain (dB)	P1dB (dBm)	OIP3 (dBm)	S11 (dB)	S22 (dB)	NF (dB)
0.10	3.4	46.0	10.4			-34.0	-21.0	
0.50	3.4	46.0	10.4			-36.0	-22.0	
0.85	3.4	46.0	10.4	13.0	24.5	-37.0	-22.0	4.4
2.00	3.4	46.0	10.4	14.0	26.0	-34.0	-21.0	4.4
4.00	3.4	46.0	10.5	13.5	26.0	-26.0	-19.0	4.4
6.00	3.4	46.0	10.5	14.0	26.0	-20.0	-17.0	4.6
10.00	3.4	46.0	10.3	14.0	25.0	-14.0	-14.0	4.7
16.00	3.4	46.0	9.0	14.0	25.5	-12.0	-11.0	5.1
20.00	3.4	46.0	7.6			-13.0	-10.0	5.1

Test Conditions: GSG Probe Data With Bias Tees, R_{BIAS} = 35Ω OIP3 Tone Spacing = 1MHz, P_{OUT} per tone = 0dBm, 25°C

Typical Performance

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140108

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice @rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical Performance (Continued)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140108

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pad Description (Dimensions in inches [millimeters])

- No connection required for unlabeled bond pads
- 2. Die thickness is 0.004 [0.10]
- 3. Typical bond pad is 0.004 [0.10] square
- 4. Backside metallization: Gold
- 5. Backside is ground
- 6. Bond pad metallization: Gold

Pin Names and Descriptions

Pin	Name	Description					
1	RFIN	This pad is DC coupled and matched to 50Ω . An external DC block is required.					
2	RFOUT/BIAS	This pad is DC coupled and matched to 50Ω . Bias is applied through this pad.					
Die Bottom	GND	Die bottom must be connected to RF/DC ground using silver-filled epoxy.					

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS140108

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Device Assembly

