Dual PLL frequency synthesizer BU2630F / BU2630FV The BU2630F/BU2630FV are a CMOS LSI with an internal dual PLL synthesizer. VCOs for transmission and reception can be controlled independently, and the reference frequency and main counter settings can also be programmed separately. This product is designed for applications involving cordless telephones and communications equipment worldwide. #### Applications Cordless telephones, amateur short wave radios, industrial transceivers, VHF/UHF frequency generators, and others #### Features - 1) Operation possible at up to 80MHz ($V_{DD} = 2.5$). - 2) Low current dissipation Dual-system operation : 2.2mA (typ), $V_{DD} = 3V$ Single-system operation : 1.2mA (typ), $V_{DD} = 3V$ Non-operating state : 0.2mA (typ), $V_{DD} = 3V$ - 3) 16-bit main counter. - 4) Internal 14-bit reference frequency counter. - 5) Unlock detection possible. - 6) Four output ports. (open drain) - 7) Control possible using 3-wire serial input. ## Block diagram ## ● Absolute maximum ratings (Ta = 25°C) | Param | eter | Symbol | Limits | Unit | |---------------------|----------|-----------------|-------------------|------| | Power supply voltag | је | V _{DD} | −0.3∼+7.0 | V | | Device dissination | BU2630F | D | 500*1 | \^/ | | Power dissipation | BU2630FV | Pd | 350* ² | mW | | Operating temperat | ure | Topr | −40~+85 | Ĉ | | Storage temperatur | е | Tstg | −55∼ +125 | °C | ^{*1} Reduced by 5.0mW for each increase in Ta of 1°C over 25°C. # ●Recommended operating conditions (Ta = 25°C) | Parameter | Symbol | Min. | Тур. | Max. | Unit | |----------------------|-----------------|------|------|------|------| | Power supply voltage | V _{DD} | 2.5 | 3.0 | 5.5 | ٧ | ## Pin descriptions | Pin No. | Pin name | Name | Function | I/O cuircuit | |---------|-----------------|-------------------------|---|--------------| | 16 | XOUT | Cristal reconstan | For veference frequency | TYPE A | | 1 | XIN | Crystal resonator | For reference frequency | TYPEA | | 2 | Vss | | | | | 3 | RPD | Phase comparator output | This is LO if the locally divided value is higher than the reference frequency, HI if it is lower, and Z if it matches. | TYPE E | | 4 | P-R | Output nort | This is controlled by the input date | TYPE D | | 5 | RON | Output port | This is controlled by the input data. | TYPED | | 6 | F-R | VCO input | Local input for reception | TYPE F | | 7 | CE | Chip enable | | | | 8 | CK | clock signal | When CE is HIGH, the DA synchronized to the rise of CK is read into the internal shift register, and is latched at the timing of the CE fall. | TYPE B | | 9 | DA | serial data | into the internal shift register, and is fatoried at the tilling of the OE fail. | | | 10 | LD | Unlock output | This goes ON when the PLL is unlocked on the transmission side | TYPE D | | 11 | F-T | VCO input | Local input for transmission | TYPE F | | 12 | TON | • | | T. (D. T. D. | | 13 | P-T | Output port | This is controlled by the input data | TYPE D | | 14 | TPD | Phase comparator output | This is LO if the locally divided value is higher than the reference frequency, HI if it is lower, and Z if it matches. | TYPE E | | 15 | V _{DD} | Power supply | 2.5~5.5V | | ^{*2} Reduced by 3.5mW for each increase in Ta of 1°C over 25°C. # ●Input/output circuits TYPE A TYPE B TYPE C ●Electrical characteristics (unless otherwise noted, Ta = 25°C, V_{DD} = 3.0V, V_{SS} = 0V) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Co | enditions | | | | | |--------------------------------|------------------|----------------------|----------------------|--------------------------|-------------------|--------------------------------------|---------------------------------------|--|--|--|--| | Power supply current 1 | I _{DD1} | _ | 2.2 | 3.0 | mA | Dual-system operation | F-TF-R=80MHz, 100mVrms | | | | | | Power supply current 2 | I _{DD2} | _ | 1.2 | 2.0 | mA | Single-system operation | XTAL=10.24MHz | | | | | | Power supply current 3 | IDD3 | _ | 0.2 | 0.3 | mA | With operation stopped: | XTAL = 10.24 MHz | | | | | | Input high level voltage 1 | VIH1 | 0.8V _{DD} | _ | _ | ٧ | CE CK DA | | | | | | | Input low level voltage 1 | V _{IL1} | _ | _ | 0.2V _{DD} | ٧ | CE CK DA | | | | | | | Input high level current 1 | I _{IH1} | _ | _ | 1.0 | μA | CE CK DA VIN=VDD | | | | | | | Input high level current 2 | I _{IH2} | - | 0.3 | _ | μA | XIN VIN=VDD | | | | | | | Input high level current 3 | Інз | - | 5.0 | _ | μΑ | F-TF-R VIN=VDD | | | | | | | Input low level current 1 | lıL1 | -1.0 | _ | _ | μΑ | CE CK DA VIN=VSS | | | | | | | Input low level current 2 | lıL2 | _ | -0.3 | _ | μΑ | XIN V _{IN} =V _{SS} | | | | | | | Input low level current 3 | lıцз | - | -5.0 | _ | μΑ | F-TF-R VIN=Vss | | | | | | | Output low level voltage 1 | V _{OL1} | - | 0.3 | 0.5 | ٧ | LD TON P-T RON P-F | R lo=1.0mA | | | | | | Off level leakage current 1 | loff1 | - | _ | 1.0 | μΑ | LD TON P-T RON P-F | R Vo=10V | | | | | | Output low level voltage 2 | V _{OL2} | - | - | 0.3 | ٧ | F-TF-R lout=0.1mA | | | | | | | Output high level voltage | Vонз | V _{DD} -50 | V _{DD} -1.0 | _ | mV | TPD RPD lout=−0 µA | | | | | | | Output low level voltage | Vol3 | - | 1.3 | 50 | mV | TPD RPD louτ=0 μ A | | | | | | | Output high level voltage | V _{OH4} | V _{DD} -100 | V _{DD} -40 | - | mV | TPD RPD Iout=-100 µ | Α | | | | | | Output low level voltage | V _{OL4} | _ | 30 | 100 | mV | TPD RPD Ιουτ=100 μ A | | | | | | | Off level leakage current 2 | loff2 | _ | - | 100 | nA | TPD RPD Vout=VDD | | | | | | | Off level leakage current 3 | loff3 | -100 | _ | _ | nA | TPD RPD Vout=Vss | | | | | | | Internal feedback resistance 1 | RF1 | _ | 10 | _ | МΩ | XIN | | | | | | | Internal feedback resistance 2 | RF2 | _ | 500 | _ | kΩ | F-TF-R | | | | | | | Input frequency 1 | F _{IN1} | 1.0 | 10.24 | 16.0 | MHz | XIN, sine wave, C coupl | ing | | | | | | Input frequency 2 | F _{IN2} | 1.0 | - | 20 | MHz | F-T F-R, sine wave, C c | oupling*2, VıN = 100 mVrms | | | | | | Input frequency 3 | Fina | 50 | _ | 80 | MHz | F-T F-R, sine wave, C c | oupling*2, Vın = 100 mVrms | | | | | | Input frequency 4 | FIN4 | 20 | _ | 50 | MHz | F-T F-R, sine wave, C c | oupling*2, V _{IN} = 50 mVrms | | | | | | Input frequency 5*1 | FIN5 | 0.4 | _ | 20 | MHz | F-T F-R, sine wave, C c | oupling*2, V _{IN} =100mVrms | | | | | | Maximum input amplitude | FINMax. | _ | _ | V _{DD} +
0.3 | V _P -P | XIN, F-TF-R | | | | | | | Input capacitance | Cin | _ | 4 | 7 | PF | PF F-TF-R | | | | | | | Minimum pulse width | TW | 1.0 | _ | _ | μs | CK, DA | | | | | | | Input data rise time | TR | _ | _ | 300 | ns | CK, DA | | | | | | | Input data fall time | TF | _ | _ | 300 | ns | CE, CK, DA | | | | | | O Not designed for radiation resistance. *1 PS = 1 Divider values which can be set *2 Minimum input level at which operation is possible Program divider: PS = 0: 256 to 65535, PS = 1: 3 to 4095 Reference frequency divider: 3 to 16383 ## Circuit operation ### Input data switching characteristics ## Input data format Programmable divider and control data input: TX side ($ID_0 = 0$, $ID_1 = 0$), RX side ($ID_0 = 1$, $ID_1 = 0$) LSB ← Input from Do | Do | D ₁ | D2 | Dз | D4 | D5 | D ₆ | D7 | D8 | D ₉ | D10 | D ₁₁ | D12 | D13 | D14 | D ₁₅ | |----|----------------|----|----|------|-----|----------------|----|----|------------------|-----------------|-----------------|----------|-----|-----|-----------------| | | | | | P-T | TON | OFF | PS | То | T ₁ | ID ₀ | ID ₁ |]
MOD | | | | | | | | | (P-R | TON | OFF | PS | То | T ₁) | | | MSB | | | | Reference frequency divider data input: TX side ($ID_0 = 0$, $ID_1 = 1$), RX side ($ID_0 = 1$, $ID_1 = 1$) | R₀ | R ₁ | R ₂ | Rз | R ₄ | R₅ | R ₆ | R ₇ | Rs | R ₉ | R ₁₀ | R ₁₁ | R ₁₂ | R13 | PL | PH | |-----|----------------|----------------|----|----------------|----|----------------|-----------------|----|----------------|-----------------|-----------------|-----------------|-----|----|----| | LSB | | | | * | * | LD₀ | LD ₁ | * | * | IDο | ID ₁ | MSB | | | | * Does not matter (LDo and LD10 are valid on TX side only) Description of data (1) Programmable divider data: D₀ ~ D₁₅ | | No. of divisions: 46.610 ÷ 5.00 kHz = 9322 (D) = 246A (H) | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | |--|---|----|----------------|----------------|----|----------------|----|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | Example: For a transmission frequency of 46.610MHz and a reference frequency of 5.00 kHz | | D₀ | D ₁ | D ₂ | Dз | D ₄ | D₅ | D ₆ | D ₇ | D ₈ | D ₉ | D ₁₀ | D ₁₁ | D ₁₂ | D ₁₃ | D ₁₄ | D ₁₅ | | (2) Reference frequency data: $R_0 \sim R_{13}$ | Ro | Rı | R ₂ | Rз | R4 | R ₅ | R ₆ | R ₇ | Re | R ₉ | R10 | R11 | R12 | R13 | |----|-----|----------------|----|----|----------------|----------------|----------------|----|----------------|-----|-----|-----|-----| | | l . | ı | | | | ı | ı | | | | ı | | 1 | Example: When XTAL = 10.24 MHz and reference frequency is 5.00 kHz No. of divisions: 10.24 MHz \div 5.00 kHz = 2048 (D) = 800 (H) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |---|---|---|---|---|---|---|---|---|---|---|---|---|---| | | 0 |) | | | (|) | | | 8 | 3 | | (|) | - (3) Output port control data: P-T (P-R) TON (RON) - 1 : Open drain output ON (LO) - 0: Open drain output OFF (HI) - (4) OFF transmission side (reception side): Operation stopped F - T (F - R) pull-down: TPD (RPD) high-impedance, LD = OFF (5) PS Programmable device change : No. of divisions = $3 \sim 4095$ | Do | D ₁ | D ₂ | Dз | D4 | D ₅ | D ₆ | D ₇ | D8 | D ₉ | D ₁₀ | D ₁₁ | D ₁₂ | D ₁₃ | D ₁₄ | D15 | |----|----------------|----------------|----|-----|----------------|----------------|----------------|----|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----| | * | *
DON'T | *
CARE | * | LSB | | | | | | | | | | | MSB | - (6) PL, PH, and PD pin control - 0 0: PLL operation - 1 0: Forced LO state - 0 1: Forced HI state - 1 1: Forced LO state - (7) LD₀, LD₁, LD pin control (valid only on TX side) - 0 0: ON when unlocked (LO) - 0 1: Air pulse output - 1 0: Forced ON state (LO) - 1 1 : Forced OFF state (HI) - (8) Input (00) to test T0 and T1. ## Application example *: Immediately after the power supply is turned on, the various pins remain unstable until data is input. Fig. 1 ### Electrical characteristic curves Fig. 2 Input frequency vs. input level Fig. 3 Input frequency vs. supply current (for single operation) Fig. 4 Input frequency vs. supply current (for dual operation) ### External dimensions (Units: mm) ## **Notes** - No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. - The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. - Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. - Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by - ROHM CO., LTD. is granted to any such buyer. - Products listed in this document use silicon as a basic material. Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.