

NTE74LS377 Integrated Circuit TTL – Octal D–Type Flip–Flop with Enable

Description:

The NTE74LS377 is a hex monolithic, positive–edge–triggered flip–flop in a 20–Lead plastic DIP type package that utilizes TTL circuitry to implement D–type flip–flop logic with an enable input. The NTE74LS377 is similar to the NTE74LS173 but features a common enable instead of a common clear.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive–going edge of the clock pulse if the enable input \overline{G} is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive–going pulse. When the clock input is at either the high or ,low level, the D input signal has no effect a the output. The circuit is designed to prevent false clocking by transitions at the \overline{G} input.

The flip–flops are guaranteed to respond to clock frequencies ranging from 0 to 30Mhz while maximum clock frequency is typically 40Mhz. Typical power dissipation is 10mW per flip–flop.

Features:

- Contains Eight Flip–Flops with Single Rail Outputs
- Individual Data Input to Each Flip-Flop

Applications:

- Buffer/Storage Registers
- Shift Registers
- Pattern Generators

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	/
DC Input Voltage, V _{IN}	/
Operating Temperature Range, T _A 0°C to +70°C	;
Storage Temperature Range, T _{stg}	;

Note 1. Unless otherwise specified, all voltages are referenced to GND.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	V
High-Level Output Current	I _{OH}	-	_	-400	μA
Low-Level Output Current	I _{OL}	-	_	8	mA
Clock Frequency	f _{clock}	0	_	30	MHz
Width of Clock Pulse	t _w	20	_	-	ns
Setup Time Data Input	t _{su}	20↑	_	_	ns
Enable Active-State		25↑	-	-	ns
Enable Inactive-State		10↑	_	-	ns
Hold Time	t _h	5↑	-	-	ns
Operating Temperature Range	T _A	0	—	+70	°C

Electrical Characteristics: (Note 2, Note 3)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
High Level Input Voltage	V _{IH}			2	-	-	V
Low Level Input Voltage	V _{IL}			-	-	0.8	V
Input Clamp Voltage	V _{IK}	$V_{CC} = MIN, I_I = -18mA$			-	-1.5	V
High Level Output Voltage	V _{OH}	V_{CC} = MIN, V_{IH} = 2V, V_{IL} = MAX, I_{OH} = -400 μ A		2.7	3.5		V
Low Level Output Voltage	V _{OL}	$V_{CC} = MIN, V_{IH} = 2V, V_{IL} = MAX$	I _{OL} = 4mA	-	0.25	0.4	V
			I _{OL} = 8mA	-	0.35	0.5	V
Input Current	lı	$V_{CC} = MAX, V_I = 7V$	-	-	-	0.1	mA
High Level Input Current	I _{IH}	$V_{CC} = MAX, V_I = 2.7V$		-	-	20	μΑ
Low Level Input Current	۱ _{IL}	$V_{CC} = MAX, V_I = 0.4V$		-	-	-0.4	mA
Short–Circuit Output Current	I _{OS}	V _{CC} = MAX, Note 4		-20	-	-100	mA
Supply Current	I _{CC}	V _{CC} = MAX, Note 5		-	17	28	mA

Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".

Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.

- Note 4. Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
- Note 4. With all outputs open and ground applied to all data inputs, I_{CC} is measured after a momentary ground, then 4.5V is applied to the clock.

<u>Switching Characteristics</u>: ($V_{CC} = 5V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Clock Frequency	f _{max}	$R_L = 2k\Omega, C_L = 15pF$	30	40	-	MHz
Propagation Delay Time, from Clock	t _{PLH}		-	17	27	ns
	t _{PHL}		I	18	27	ns

Function Table (Each Flip-Flop):

	Inputs Outputs			outs
G	Clock	Data	Q	Q
Н	Х	Х	Q ₀	\overline{Q}_0
L	1	Н	Н	L
L	1	L	L	Н
Х	L	Х	Q ₀	\overline{Q}_0

